About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 297941, 9 pages
http://dx.doi.org/10.1155/2013/297941
Research Article

Effect of Operating Conditions on Catalytic Gasification of Bamboo in a Fluidized Bed

1Division of Agricultural Engineering, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
2Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

Received 19 March 2013; Revised 3 June 2013; Accepted 3 June 2013

Academic Editor: Deepak Kunzru

Copyright © 2013 Thanasit Wongsiriamnuay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Lv, J. Chang, T. Wang, Y. Fu, Y. Chen, and J. Zhu, “Hydrogen-rich gas production from biomass catalytic gasification,” Energy and Fuels, vol. 18, no. 1, pp. 228–233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Wei, S. Xu, L. Zhang, C. Liu, H. Zhu, and S. Liu, “Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor,” International Journal of Hydrogen Energy, vol. 32, no. 1, pp. 24–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Panigrahi, A. K. Dalai, S. T. Chaudhari, and N. N. Bakhshi, “Synthesis gas production from steam gasification of biomass-derived oil,” Energy and Fuels, vol. 17, no. 3, pp. 637–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. K. Ko, W.-Y. Lee, S.-B. Kim, K.-W. Lee, and H.-S. Chun, “Gasification of food waste with steam in fluidized bed,” The Korean Journal of Chemical Engineering, vol. 18, no. 6, pp. 961–964, 2001. View at Scopus
  5. E. Kantarelis, J. Liu, W. Yang, and W. Blasiak, “Sustainable valorization of bamboo via high-temperature steam pyrolysis for energy production and added value materials,” Energy and Fuels, vol. 24, no. 11, pp. 6142–6150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Wongsiriamnuay and N. Tippayawong, “Thermogravimetric analysis of giant sensitive plants under air atmosphere,” Bioresource Technology, vol. 101, no. 23, pp. 9314–9320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Acharya, A. Dutta, and P. Basu, “An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO,” International Journal of Hydrogen Energy, vol. 35, no. 4, pp. 1582–1589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Li, Y. Yin, X. Zhang, J. Liu, and R. Yan, “Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst,” International Journal of Hydrogen Energy, vol. 34, no. 22, pp. 9108–9115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Wongsiriamnuay and N. Tippayawong, “Product gas distribution and composition from catalyzed gasification of mimosa,” International Journal of Renewable Energy Research, vol. 2, no. 3, pp. 363–368, 2012.
  10. B. Moghtaderi, “Effects of controlling parameters on production of hydrogen by catalytic steam gasification of biomass at low temperatures,” Fuel, vol. 86, no. 15, pp. 2422–2430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. C. C. Chang, H.-F. Chang, F.-J. Lin, K.-H. Lin, and C.-H. Chen, “Biomass gasification for hydrogen production,” International Journal of Hydrogen Energy, vol. 36, no. 21, pp. 14252–14260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Li and K. Suzuki, “Tar property, analysis, reforming mechanism and model for biomass gasification-An overview,” Renewable and Sustainable Energy Reviews, vol. 13, no. 3, pp. 594–604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Q.-Z. Yu, C. Brage, T. Nordgreen, and K. Sjöström, “Effects of Chinese dolomites on tar cracking in gasification of birch,” Fuel, vol. 88, no. 10, pp. 1922–1926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Dalai, E. Sasaoka, H. Hikita, and D. Ferdoust, “Catalytic gasification of sawdust derived from various biomass,” Energy and Fuels, vol. 17, no. 6, pp. 1456–1463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Asadullah, S.-I. Ito, K. Kunimori, M. Yamada, and K. Tomishige, “Biomass gasification to hydrogen and syngas at low temperature: novel catalytic system using fluidized-bed reactor,” Journal of Catalysis, vol. 208, no. 2, pp. 255–259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. K.-Y. Chiang, Y.-S. Chen, W.-S. Tsai, C.-H. Lu, and K.-L. Chien, “Effect of calcium based catalyst on production of synthesis gas in gasification of waste bamboo chopsticks,” International Journal of Hydrogen Energy, vol. 37, no. 18, pp. 13737–13745, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Akay and C. A. Jordan, “Gasification of fuel cane bagasse in a downdraft gasifier: influence of lignocellulosic composition and fuel particle size on syngas composition and yield,” Energy and Fuels, vol. 25, no. 5, pp. 2274–2283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Dasappa, H. V. Sridhar, G. Sridhar, P. J. Paul, and H. S. Mukunda, “Biomass gasification—a substitute to fossil fuel for heat application,” Biomass and Bioenergy, vol. 25, no. 6, pp. 637–649, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Xiao, M.-J. Ni, H. Huang et al., “Fluidized-bed pyrolysis of waste bamboo,” Journal of Zhejiang University A, vol. 8, no. 9, pp. 1495–1499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. K. Yu, K. F. Chung, and S. L. Chan, “Axial buckling of bamboo columns in bamboo scaffolds,” Engineering Structures, vol. 27, no. 1, pp. 61–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Li, H. Shen, W. Shan, and T. Han, “Flexural behavior of lightweight bamboosteel composite slabs,” Thin-Walled Structures, vol. 53, pp. 83–90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Y. Lo, H. Z. Cui, P. W. C. Tang, and H. C. Leung, “Strength analysis of bamboo by microscopic investigation of bamboo fibre,” Construction and Building Materials, vol. 22, no. 7, pp. 1532–1535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Ghavami, “Bamboo as reinforcement in structural concrete elements,” Cement and Concrete Composites, vol. 27, no. 6, pp. 637–649, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. W. H. Cheung, S. S. Y. Lau, S. Y. Leung, A. W. M. Ip, and G. McKay, “Characteristics of chemical modified activated carbons from bamboo scaffolding,” The Chinese Journal of Chemical Engineering, vol. 20, no. 3, pp. 515–523, 2012.
  25. K. K. H. Choy, J. P. Barford, and G. McKay, “Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis,” Chemical Engineering Journal, vol. 109, no. 1, pp. 147–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. W. M. Ip, J. P. Barford, and G. McKay, “Production and comparison of high surface area bamboo derived active carbons,” Bioresource Technology, vol. 99, no. 18, pp. 8909–8916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Q.-S. Liu, T. Zheng, P. Wang, and L. Guo, “Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation,” Industrial Crops and Products, vol. 31, no. 2, pp. 233–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-F. Lo, S.-Y. Wang, M.-J. Tsai, and L.-D. Lin, “Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons,” Chemical Engineering Research and Design, vol. 90, no. 9, pp. 1397–1406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. L. K. Mui, W. H. Cheung, M. Valix, and G. Mckay, “Activated carbons from bamboo scaffolding using acid activation,” Separation and Purification Technology, vol. 74, no. 2, pp. 213–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Jiang, Z. Liu, B. Fei, Z. Cai, Y. Yu, and X. Liu, “The pyrolysis characteristics of moso bamboo,” Journal of Analytical and Applied Pyrolysis, vol. 94, pp. 48–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. S.-H. Jung, B.-S. Kang, and J.-S. Kim, “Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system,” Journal of Analytical and Applied Pyrolysis, vol. 82, no. 2, pp. 240–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Krzesińska and J. Zachariasz, “The effect of pyrolysis temperature on the physical properties of monolithic carbons derived from solid iron bamboo,” Journal of Analytical and Applied Pyrolysis, vol. 80, no. 1, pp. 209–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Lou, S.-B. Wu, and G.-J. Lv, “Effect of conditions on fast pyrolysis of bamboo lignin,” Journal of Analytical and Applied Pyrolysis, vol. 89, no. 2, pp. 191–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. E. L. K. Mui, W. H. Cheung, V. K. C. Lee, and G. McKay, “Compensation effect during the pyrolysis of tyres and bamboo,” Waste Management, vol. 30, no. 5, pp. 821–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Umeki, T. Namioka, and K. Yoshikawa, “The effect of steam on pyrolysis and char reactions behavior during rice straw gasification,” Fuel Processing Technology, vol. 94, no. 1, pp. 53–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Xiao, Y. Chi, M. Ni, and K. Cen, “Study on fluidized-bed gasification of bamboo,” Acta Energiae Solaris Sinica, vol. 28, no. 7, pp. 814–818, 2007. View at Scopus
  37. N. Kannang, T. Wongsiriamnuay, and N. Tippayawong, “Fuel gas production from low temperature gasification of bamboo in fluidized bed reactor,” in Proceedings of the International conference of the Thai Society of Agricultural Engineering, Chiangmai, Thailand., 2012.
  38. G. Gautam, S. Adhikari, S. Thangalazhy-Gopakumar, C. Brodbeck, S. Bhavnani, and S. Taylor, “Tar analysis in syngas derived from pelletized biomass in a commercial stratified downdraft gasifier,” BioResources, vol. 6, no. 4, pp. 4652–4661, 2011. View at Scopus
  39. P. M. Lv, Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen, and J. X. Zhu, “An experimental study on biomass air-steam gasification in a fluidized bed,” Bioresource Technology, vol. 95, no. 1, pp. 95–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. H. Lee, K. B. Choi, J. G. Lee, and J. H. Kim, “Gasification characteristics of combustible wastes in a 5 ton/day fixed bed gasifier,” The Korean Journal of Chemical Engineering, vol. 23, no. 4, pp. 576–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Zhang, S. Kajitani, M. Ashizawa, and Y. Oki, “Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace,” Fuel, vol. 89, no. 2, pp. 302–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Skoulou, G. Koufodimos, Z. Samaras, and A. Zabaniotou, “Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas,” International Journal of Hydrogen Energy, vol. 33, no. 22, pp. 6515–6524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Montoya, T.-T. T. Truong, F. Mondragón, and T. N. Truong, “CO desorption from oxygen species on carbonaceous surface: 1. Effects of the local structure of the active site and the surface coverage,” Journal of Physical Chemistry A, vol. 105, no. 27, pp. 6757–6764, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. H.-K. Seo, S. Park, J. Lee et al., “Effects of operating factors in the coal gasification reaction,” The Korean Journal of Chemical Engineering, vol. 28, no. 9, pp. 1851–1858, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. K. G. Mansaray, A. E. Ghaly, A. M. Al-Taweel, F. Hamdullahpur, and V. I. Ugursal, “Air gasification of rice husk in a dual distributor type fluidized bed gasifier,” Biomass and Bioenergy, vol. 17, no. 4, pp. 315–332, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. de Andrés, A. Narros, and M. E. Rodríguez, “Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge,” Fuel, vol. 90, no. 2, pp. 521–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Subramanian, A. Sampathrajan, and P. Venkatachalam, “Fluidized bed gasification of select granular biomaterials,” Bioresource Technology, vol. 102, no. 2, pp. 1914–1920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Narváez, A. Orío, M. P. Aznar, and J. Corella, “Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas,” Industrial and Engineering Chemistry Research, vol. 35, no. 7, pp. 2110–2120, 1996. View at Scopus
  49. T.-Y. Mun, P.-G. Seon, and J.-S. Kim, “Production of a producer gas from woody waste via air gasification using activated carbon and a two-stage gasifier and characterization of tar,” Fuel, vol. 89, no. 11, pp. 3226–3234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Basu, Biomass Gasification and Pyrolysis: Practical Design and Theory, Academic Press, Boston, Mass, USA, 2010.