About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 343276, 22 pages
http://dx.doi.org/10.1155/2013/343276
Review Article

Large Eddy Simulation for Dispersed Bubbly Flows: A Review

1ABB Switzerland Ltd., 5400 Baden, Switzerland
2Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands
3Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, Switzerland
4Institute of Chemical Technology, Matunga, Mumbai 400 019, India
5Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India

Received 14 June 2012; Revised 31 October 2012; Accepted 18 November 2012

Academic Editor: Nandkishor Nere

Copyright © 2013 M. T. Dhotre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Sokolichin, G. Eigenberger, A. Lapin, and A. Lübbert, “Dynamic numerical simulation of gas-liquid two-phase flows: Euler/Euler versus Euler/Lagrange,” Chemical Engineering Science, vol. 52, no. 4, pp. 611–626, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Bois, D. Jamet, and O. Lebaigue, “Towards large eddy simulation of two-phase flow with phase-change: direct numerical simulation of a pseudo-turbulent two-phase condensing flow,” in Proceedings of the 7th International Conference on Multiphase Flow (ICMF '10), Tampa, Fla, USA, May-June 2010.
  3. A. Toutant, M. Chandesris, D. Jamet, and O. Lebaigue, “Jump conditions for filtered quantities at an under-resolved discontinuous interface—part 1: theoretical development,” International Journal of Multiphase Flow, vol. 35, no. 12, pp. 1100–1118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Toutant, M. Chandesris, D. Jamet, and O. Lebaigue, “Jump conditions for filtered quantities at an under-resolved discontinuous interface—part 2: a priori tests,” International Journal of Multiphase Flow, vol. 35, no. 12, pp. 1119–1129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Magdeleine, B. Mathieu, O. Lebaigue, and C. Morel, “DNS up-scaling applied to volumetric interfacial area transport equation,” in Proceedings of the 7th International Conference on Multiphase Flow (ICMF '10), p. 12, Tampa, Fla, USA, May-June 2010.
  6. D. Lakehal, “LEIS for the prediction of turbulent multi-fluid flows applied to thermal hydraulics applications,” in Proceedings of the XFD4NRS, Grenoble, France, September 2008.
  7. D. Lakehal, M. Fulgosi, S. Banerjee, and G. Yadigaroglu, “Turbulence and heat exchange in condensing vapor-liquid flow,” Physics of Fluids, vol. 20, no. 6, Article ID 065101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Bestion, “Applicability of two-phase CFD to nuclear reactor thermalhydraulics and elaboration of best practice guidelines,” Nuclear Engineering and Design, vol. 253, pp. 311–321, 2012.
  9. B. Ničeno, M. T. Dhotre, and N. G. Deen, “One-equation sub-grid scale (SGS) modelling for Euler-Euler large eddy simulation (EELES) of dispersed bubbly flow,” Chemical Engineering Science, vol. 63, no. 15, pp. 3923–3931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Niceno, M. Boucker, and B. L. Smith, “Euler-Euler large eddy simulation of a square cross-sectional bubble column using the Neptune CFD code,” Science and Technology of Nuclear Installations, vol. 2009, Article ID 410272, 2009.
  11. M. Milelli, B. L. Smith, and D. Lakehal, “Large-eddy simulation of turbulent shear flows laden with bubbles,” in Direct and Large-Eddy Simulation IV, B. J. Geurts, R. Friedrich, and O. Metais, Eds., pp. 461–470, Kluwer Academic Publishers, Amsterdam, The Netherlands, 2001.
  12. D. A. Drew, “Averaged field equations for two-phase media,” Studies in Applied Mathematics, vol. 50, no. 2, pp. 133–165, 1971.
  13. S. Elgobashi, “Particle-laden turbulent flows: direct simulation and closure models,” Applied Scientific Research, vol. 48, no. 3-4, pp. 301–314, 1991. View at Publisher · View at Google Scholar
  14. C. T. Crowe, M. P. Sharma, and D. E. Stock, “The particle-source-in cell (PSI-CELL) model for gas-droplet flows,” Journal of Fluids Engineering, vol. 99, no. 2, pp. 325–332, 1977. View at Scopus
  15. G. Hu, Towards large eddy simulation of dispersed gas-liquid two-phase turbulent flows [Ph.D. thesis], Mechanical and Aerospace Engineering Department, West Virginia University, Morgantown, WVa, USA, 2005.
  16. N. G. Deen, M. V. S. Annaland, and J. A. M. Kuipers, “Multi-scale modeling of dispersed gas-liquid two-phase flow,” Chemical Engineering Science, vol. 59, pp. 1853–1861, 2004. View at Publisher · View at Google Scholar
  17. M. V. Tabib, S. A. Roy, and J. B. Joshi, “CFD simulation of bubble column—an analysis of interphase forces and turbulence models,” Chemical Engineering Journal, vol. 139, no. 3, pp. 589–614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. T. Dhotre, B. Niceno, B. L. Smith, and M. Simiano, “Large-eddy simulation (LES) of the large scale bubble plume,” Chemical Engineering Science, vol. 64, no. 11, pp. 2692–2704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. G. Deen, T. Solberg, and B. H. Hjertager, “Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column,” Chemical Engineering Science, vol. 56, no. 21-22, pp. 6341–6349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Dhotre, B. Niceno, and B. L. Smith, “Large eddy simulation of a bubble column using dynamic sub-grid scale model,” Chemical Engineering Journal, vol. 136, no. 2-3, pp. 337–348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Smagorinsky, “General circulation experiments with the primitive equations,” Monthly Weather Review, vol. 91, pp. 99–165, 1963. View at Publisher · View at Google Scholar
  22. P. Moin and J. Kim, “Numerical investigations of turbulent channel flow,” Journal of Fluid Mechanics, vol. 118, pp. 341–377, 1982. View at Scopus
  23. W. Jones and M. Wille, “Large eddy simulation of a jet in a cross flow,” in Proceedings of the 10th Symposium on Turbulent Shear Flows, pp. 41–46, The Pennsylvania State University, 1995.
  24. M. Milelli, B. L. Smith, and D. Lakehal, “Large-eddy simulation of turbulent shear flows laden with bubbles,” in Direct and Large-Eddy Simulation IV, B. J. Geurts, R. Friedrich, and O. Metais, Eds., pp. 461–470, Kluwer Academic Publishers, Amsterdam, The Netherlands, 2001.
  25. D. Lakehal, B. L. Smith, and M. Milelli, “Large-eddy simulation of bubbly turbulent shear flows,” Journal of Turbulence, vol. 3, pp. 1–20, 2002. View at Scopus
  26. D. Zhang, N. G. Deen, and J. A. M. Kuipers, “Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces,” Chemical Engineering Science, vol. 61, no. 23, pp. 7593–7608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Lain, “Dynamic three-dimensional simulation of gas liquid flow in a cylindrical bubble column Latin American,” Applied Research, vol. 39, pp. 317–329, 2009.
  28. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Physics of Fluids A, vol. 3, no. 7, pp. 1760–1765, 1991. View at Scopus
  29. S. Bove, T. Solbergt, and B. H. Hjertager, “Numerical aspects of bubble column simulations,” International Journal of Chemical Reactor Engineering, vol. 2, no. A1, pp. 1–22, 2004. View at Scopus
  30. M. V. Tabib and P. Schwarz, “Quantifying sub-grid scale (SGS) turbulent dispersion force and its effect using one-equation SGS large eddy simulation (LES) model in a gas-liquid and a liquid-liquid system,” Chemical Engineering Science, vol. 66, no. 14, pp. 3071–3086, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. E. I. V. van den Hengel, N. G. Deen, and J. A. M. Kuipers, “Application of coalescence and breakup models in a discrete bubble model for bubble columns,” Industrial and Engineering Chemistry Research, vol. 44, no. 14, pp. 5233–5245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Hu and I. Celik, “Eulerian-Lagrangian based large-eddy simulation of a partially aerated flat bubble column,” Chemical Engineering Science, vol. 63, no. 1, pp. 253–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Darmana, N. G. Deen, J. A. M. Kuipers, W. K. Harteveld, and R. F. Mudde, “Numerical study of homogeneous bubbly flow: influence of the inlet conditions to the hydrodynamic behavior,” International Journal of Multiphase Flow, vol. 35, no. 12, pp. 1077–1099, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Sungkorn, J. J. Derksen, and J. G. Khinast, “Modeling of turbulent gas-liquid bubbly flows using stochastic Lagrangian model and lattice-Boltzmann scheme,” Chemical Engineering Science, vol. 66, no. 12, pp. 2745–2757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Bai, N. G. Deen, and J. A. M. Kuipers, “Numerical analysis of the effect of gas sparging on bubble column hydrodynamics,” Industrial and Engineering Chemistry Research, vol. 50, no. 8, pp. 4320–4328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Bai, N. G. Deen, and J. A. M. Kuipers, “Numerical investigation of gas holdup and phase mixing in bubble column reactors,” Industrial & Engineering Chemistry Research, vol. 51, no. 4, pp. 1949–1961, 2012. View at Publisher · View at Google Scholar
  37. Y. Sato and K. Sekoguchi, “Liquid velocity distribution in two-phase bubble flow,” International Journal of Multiphase Flow, vol. 2, no. 1, pp. 79–95, 1975. View at Scopus
  38. D. Pfleger and S. Becker, “Modelling and simulation of the dynamic flow behaviour in a bubble column,” Chemical Engineering Science, vol. 56, no. 4, pp. 1737–1747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. A. A. Troshko and Y. A. Hassan, “A two-equation turbulence model of turbulent bubbly flows,” International Journal of Multiphase Flow, vol. 27, no. 11, pp. 1965–2000, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Sommerfeld, “Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence,” International Journal of Multiphase Flow, vol. 27, no. 10, pp. 1829–1858, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Sommerfeld, G. Kohnen, and M. Rueger, “Some open questions and inconsistencies of Lagrangian particle dispersion models,” in Proceedings of the 9th Symposium on Turbulent Shear Flows, Kyoto, Japan, 1993, paper no. 15-1.
  42. Y. Sato, M. Sadatomi, and K. Sekoguchi, “Momentum and heat transfer in two-phase bubble flow-I. Theory,” International Journal of Multiphase Flow, vol. 7, no. 2, pp. 167–177, 1981. View at Scopus
  43. D. Pfleger, S. Gomes, N. Gilbert, and H. G. Wagner, “Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian-Eulerian modeling approach,” Chemical Engineering Science, vol. 54, no. 21, pp. 5091–5099, 1999.
  44. M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE Journal, vol. 25, no. 5, pp. 843–855, 1979. View at Scopus
  45. A. Tomiyama, “Drag lift and virtual mass forces acting on a single bubble,” in Proceedings of the 3rd International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, September 2004.
  46. R. M. Wellek, A. K. Agrawal, and A. H. P. Skelland, “Shape of liquid drops moving in liquid media,” AIChE Journal, vol. 12, no. 5, pp. 854–862, 1966. View at Publisher · View at Google Scholar
  47. A. Tomiyama, “Struggle with computional bubble dynamics,” in Proceedings of the 3rd International Conference on Multi-Phase Flow (ICMF '98), Lyon, France, June 1998.
  48. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops and Particles, Academic Press, New York, NY, USA, 1978.
  49. M. Milelli, A numerical analysis of confined turbulent bubble plume [Diss. EH. no. 14799], Swiss Federal Institute of Technology, Zurich, Switzerland, 2002.
  50. J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved subgrid models for large eddy simulation,” AIAA paper 80-1358, 1980.
  51. P. E. Anagbo and J. K. Brimacombe, “Plume characteristics and liquid circulation in gas injection through a porous plug,” Metallurgical Transactions B, vol. 21, no. 4, pp. 637–648, 1990. View at Publisher · View at Google Scholar · View at Scopus
  52. M. R. Bhole, S. Roy, and J. B. Joshi, “Laser doppler anemometer measurements in bubble column: effect of sparger,” Industrial and Engineering Chemistry Research, vol. 45, no. 26, pp. 9201–9207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Becker, A. Sokolichin, and G. Eigenberger, “Gas-liquid flow in bubble columns and loop reactors—part II: comparison of detailed experiments and flow simulations,” Chemical Engineering Science, vol. 49, no. 24, part 2, pp. 5747–5762, 1994. View at Publisher · View at Google Scholar
  54. A. Sokolichin and G. Eigenberger, “Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns—part I: detailed numerical simulations,” Chemical Engineering Science, vol. 54, no. 13-14, pp. 2273–2284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Simiano, Experimental investigation of large-scale three dimensional bubble plume dynamics [Dissertation no. 16220], Swiss Federal Institute of Technology, Zurich, Switzerland, 2005.
  56. S. Lain and M. Sommerfeld, “LES of gas-liquid flow in a cylindrical laboratory bubble column,” in Proceedings of the 5th International Conference on Multiphase Flow (ICMF '04), Yokohama, Japan, 2004, paper no. 337.
  57. M. Lopez de Bertodano, Turbulent bubbly two-phase flow in a triangular duct [Ph.D. thesis], Rensselaer Polytechnic Institute, Troy, NY, USA, 1992.
  58. E. Delnoij, F. A. Lammers, J. A. M. Kuipers, and W. P. M. van Swaaij, “Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model,” Chemical Engineering Science, vol. 52, no. 9, pp. 1429–1458, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Delnoij, J. A. M. Kuipers, and W. P. M. Van Swaaij, “A three-dimensional CFD model for gas-liquid bubble columns,” Chemical Engineering Science, vol. 54, no. 13-14, pp. 2217–2226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Bröder and M. Sommerfeld, “An advanced LIF-PLV system for analysing the hydrodynamics in a laboratory bubble column at higher void fractions,” Experiments in Fluids, vol. 33, no. 6, pp. 826–837, 2002. View at Scopus
  61. W. K. Harteveld, J. E. Julia, R. F. Mudde, and H. E. A. van den Akker, “Large scale vortical structures in bubble columns for gas fractions in the range of 5–25%,” in Proceedings of the 16th International Congress of Chemical and Process Engineering (CHISA '04), Prague, Czech Republic, 2004.
  62. J. B. Joshi and M. M. Sharma, “A circulation cell model for bubble columns,” Transactions of the Institution of Chemical Engineers, vol. 57, no. 4, pp. 244–251, 1979. View at Scopus
  63. J. B. Joshi, “Axial mixing in multiphase contactors—a unified correlation,” Transactions of the Institution of Chemical Engineers, vol. 58, no. 3, pp. 155–165, 1980. View at Scopus
  64. V. V. Ranade and J. B. Joshi, “Flow generated by pitched blade turbines. 1. Measurements using laser Doppler anemometer,” Chemical Engineering Communications, vol. 81, pp. 197–224, 1989. View at Publisher · View at Google Scholar · View at Scopus
  65. V. V. Ranade, J. R. Bourne, and J. B. Joshi, “Fluid mechanics and blending in agitated tanks,” Chemical Engineering Science, vol. 46, no. 8, pp. 1883–1893, 1991. View at Scopus
  66. T. Kumaresan and J. B. Joshi, “Effect of impeller design on the flow pattern and mixing in stirred tanks,” Chemical Engineering Journal, vol. 115, no. 3, pp. 173–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. J. B. Joshi, M. M. Sharma, Y. T. Shah, C. P. P. Singh, M. Ally, and G. E. Klinzing, “Heat transfer in multiphase contactors,” Chemical Engineering Communications, vol. 6, no. 4-5, pp. 257–271, 1980. View at Scopus
  68. M. T. Dhotre and J. B. Joshi, “Two-dimensional CFD model for the prediction of flow pattern, pressure drop and heat transfer coefficient in bubble column reactors,” Chemical Engineering Research and Design, vol. 82, no. 6, pp. 689–707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. M. T. Dhotre, K. Ekambara, and J. B. Joshi, “CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors,” Experimental Thermal and Fluid Science, vol. 28, no. 5, pp. 407–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. A. V. Kulkarni, S. V. Badgandi, and J. B. Joshi, “Design of ring and spider type spargers for bubble column reactor: experimental measurements and CFD simulation of flow and weeping,” Chemical Engineering Research and Design, vol. 87, no. 12, pp. 1612–1630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. B. Joshi and M. M. Sharma, “Mass transfer and hydrodynamic characteristics of gas inducing type of agitated contactors,” Canadian Journal of Chemical Engineering, vol. 55, no. 6, pp. 683–695, 1977. View at Scopus
  72. B. N. Murthy, N. A. Deshmukh, A. W. Patwardhan, and J. B. Joshi, “Hollow self-inducing impellers: flow visualization and CFD simulation,” Chemical Engineering Science, vol. 62, no. 14, pp. 3839–3848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. K. S. M. S. Raghava Rao, V. B. Rewatkar, and J. B. Joshi, “Critical impeller speed for solid suspension in mechanically agitated contactors,” AIChE Journal, vol. 34, no. 8, pp. 1332–1340, 1988. View at Scopus
  74. V. B. Rewatkar, K. S. M. S. Raghava Rao, and J. B. Joshi, “Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Experimental part,” Industrial and Engineering Chemistry Research, vol. 30, no. 8, pp. 1770–1784, 1991. View at Scopus
  75. B. N. Murthy, R. S. Ghadge, and J. B. Joshi, “CFD simulations of gas-liquid-solid stirred reactor: prediction of critical impeller speed for solid suspension,” Chemical Engineering Science, vol. 62, no. 24, pp. 7184–7195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. B. Joshi and V. V. Ranade, “Computational fluid dynamics for designing process equipment: expectations, current status, and path forward,” Industrial and Engineering Chemistry Research, vol. 42, no. 6, pp. 1115–1128, 2003. View at Scopus
  77. D. Darmana, N. G. Deen, and J. A. M. Kuipers, “Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model,” Chemical Engineering Science, vol. 60, no. 12, pp. 3383–3404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Darmana, R. L. B. Henket, N. G. Deen, and J. A. M. Kuipers, “Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: chemisorption of CO2 into NaOH solution, numerical and experimental study,” Chemical Engineering Science, vol. 62, no. 9, pp. 2556–2575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Zhang, N. G. Deen, and J. A. M. Kuipers, “Euler-euler modeling of flow, mass transfer, and chemical reaction in a bubble column,” Industrial and Engineering Chemistry Research, vol. 48, no. 1, pp. 47–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. A. W. Vreman, “An eddy-viscosity sub-grid-scale model for turbulent shear flow: algebraic theory and applications,” Physics of Fluids, vol. 16, no. 10, pp. 3670–3681, 2004.
  81. K. Ekambara and J. B. Joshi, “Axial mixing in laminar pipe flows,” Chemical Engineering Science, vol. 59, no. 18, pp. 3929–3944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. C. S. Mathpati, S. S. Deshpande, and J. B. Joshi, “Computational and experimental fluid dynamics of jet loop reactor,” AIChE Journal, vol. 55, no. 10, pp. 2526–2544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. C. S. Mathpatii, M. V. Tabib, S. S. Deshpande, and J. B. Joshi, “Dynamics of flow structures and transport phenomena, 2. Relationship with design objectives and design optimization,” Industrial and Engineering Chemistry Research, vol. 48, no. 17, pp. 8285–8311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. J. B. Joshi, V. S. Vitankar, A. A. Kulkarni, M. T. Dhotre, and K. Ekambara, “Coherent flow structures in bubble column reactors,” Chemical Engineering Science, vol. 57, no. 16, pp. 3157–3183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. S. S. Deshpande, J. B. Joshi, V. R. Kumar, and B. D. Kulkarni, “Identification and characterization of flow structures in chemical process equipment using multiresolution techniques,” Chemical Engineering Science, vol. 63, no. 21, pp. 5330–5346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. M. V. Tabib and J. B. Joshi, “Analysis of dominant flow structures and their flow dynamics in chemical process equipment using snapshot proper orthogonal decomposition technique,” Chemical Engineering Science, vol. 63, no. 14, pp. 3695–3715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. M. V. Tabib, M. J. Sathe, S. S. Deshpande, and J. B. Joshi, “A hybridized snapshot proper orthogonal decomposition-discrete wavelet transform technique for the analysis of flow structures and their time evolution,” Chemical Engineering Science, vol. 64, no. 21, pp. 4319–4340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. M. J. Sathe, I. H. Thaker, T. E. Strand, and J. B. Joshi, “Advanced PIV/LIF and shadowgraphy system to visualize flow structure in two-phase bubbly flows,” Chemical Engineering Science, vol. 65, no. 8, pp. 2431–2442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. C. S. Mathpati, M. J. Sathe, and J. B. Joshi, “Reply to ‘comments on dynamics of flow structures and transport phenomena—part I: experimental and numerical techniques for identification and energy content of flow structures’,” Industrial and Engineering Chemistry Research, vol. 49, no. 9, pp. 4471–4473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. S. S. Deshpande, C. S. Mathpati, S. S. Gulawani, J. B. Joshi, and V. Ravi kumar, “Effect of flow structures on heat transfer in single and multiphase jet reactors,” Industrial and Engineering Chemistry Research, vol. 48, no. 21, pp. 9428–9440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. S. S. Deshpande, M. V. Tabib, J. B. Joshi, V. Ravi Kumar, and B. D. Kulkarni, “Analysis of flow structures and energy spectra in chemical process equipment,” Journal of Turbulence, vol. 11, article N5, pp. 1–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. Z. Khan, C. S. Mathpati, and J. B. Joshi, “Comparison of turbulence models and dynamics of turbulence structures in bubble column reactors: effects of sparger design and superficial gas velocity,” Chemical Engineering Science. In press.