About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 438270, 8 pages
http://dx.doi.org/10.1155/2013/438270
Research Article

Effect of Additives and Process Variables on Enzymatic Hydrolysis of Macauba Kernel Oil (Acrocomia aculeata)

1Program of Post-Graduation in Bioenergy, Maringa State University, UEM, Avenida Colombo 5790, 87020-900 Maringa, PR, Brazil
2Department of Chemical Engineering, Maringa State University, UEM, Avenida Colombo 5790, 87020-900 Maringa, PR, Brazil
3Department of Technology, Maringá State University, UEM, 87506-370 Umuarama, PR, Brazil

Received 19 August 2013; Accepted 22 September 2013

Academic Editor: Donald L. Feke

Copyright © 2013 Djéssica Tatiane Raspe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This work investigates the production of free fatty acids (FFAs) from the enzymatic hydrolysis of macauba kernel oil. Experiments evaluate the effect of different enzymes and the addition of salts, surfactants, and solvents to the reaction medium, as well as the effect of process variables. Results showed that FFA yields obtained for use of Lipozyme RM IM were higher than those obtained from Lipozyme TL IM and Lipozyme 435. The addition of salts and surfactants did not promote increased production of FFAs, while adding n-hexane and heptane to the reaction medium led to an increased reaction rate. It can be observed for the results that the temperature, water :  oil mass ratio, and enzyme percentage had positive effects on the FFA yield in the range of 35°C to 55°C, 1 :  20 to 1 :  2, and 1 to 15%, respectively, and that, from these limits, increases in these variables did not cause significant increase in FFA yields. The addition of buffer promoted an increase in yield FFAs, as well as the pH of the buffer, and it was reported that an agitation of 400 rpm resulted in the highest yields in the investigated range.