About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 617274, 10 pages
http://dx.doi.org/10.1155/2013/617274
Research Article

Corecovery of Bio-Oil and Fermentable Sugars from Oil-Bearing Biomass

1Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI 96816, USA
2Suganit Systems Inc., 10903 Hunt Club Road Reston, VA 20190-3912, USA

Received 27 April 2013; Revised 8 July 2013; Accepted 8 July 2013

Academic Editor: Said Galai

Copyright © 2013 Godwin Severa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. T. W. M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresource Technology, vol. 100, no. 1, pp. 10–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Cooney, G. Young, and N. Nagle, “Extraction of bio-oils from microalgae,” Separation and Purification Reviews, vol. 38, no. 4, pp. 291–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Mora-Pale, L. Meli, T. V. Doherty, R. J. Linhardt, and J. S. Dordick, “Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass,” Biotechnology and Bioengineering, vol. 108, no. 6, pp. 1229–1245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. E. Synder and T. W. Kwon, Soybean Utilization, Van Nostrand Reinhold, New York, NY, USA, 1987.
  5. W. M. J. Achten, L. Verchot, Y. J. Franken et al., “Jatropha bio-diesel production and use,” Biomass and Bioenergy, vol. 32, no. 12, pp. 1063–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Staubmann, “Biogas production from Jatropha curcas press-cake,” Applied Biochemistry and Biotechnology A, vol. 63-65, no. 1–3, pp. 457–467, 1997. View at Scopus
  7. Y. Liang, T. Siddaramu, J. Yesuf, and N. Sarkany, “Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis,” Bioresource Technology, vol. 101, no. 16, pp. 6417–6424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. J. Kootstra, H. H. Beeftink, and J. P. M. Sanders, “Valorisation of Jatropha curcas: solubilisation of proteins and sugars from the NaOH extracted de-oiled press cake,” Industrial Crops and Products, vol. 34, no. 1, pp. 972–978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Openshaw, “A review of Jatropha curcas: an oil plant of unfulfilled promise,” Biomass and Bioenergy, vol. 19, no. 1, pp. 1–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. V. R. da Silvaa, M. D. M. C. R. da Silvaa, A. I. M. C. L. Ferreiraa, Q. Shib, B. F. Woodfieldb, and R. N. Goldbergc, “Thermochemistry of alpha-D-xylose(cr),” Journal of Chemical Thermodynamics, vol. 58, pp. 20–28, 2012.
  11. USDA, Oilseeds: World Markets and Trade, United States Department of Agriculture, 2013.
  12. T. Adriaans, “Suitability of solvent extraction for Jatropha curcas,” Ingenia Consultants and Engineers, for FACT Foundation, 2006.
  13. M. J. Cooney and C. K. H. Guay, “Heterotrophic algal-biodiesel production: challenges and opportunities,” in Biofuel and Bioenergy from Biowastes and Lignocellulosic Biomass, S. K. Khanal, Ed., pp. 346–370, American Society of Civil Engineers, 2010.
  14. G. Brodeur, E. Yau, K. Badal, J. Collier, K. B. Ramachandran, and S. Ramakrishnan, “Chemical and physicochemical pretreatment of lignocellulosic biomass: a review,” Enzyme Research, vol. 2011, Article ID 787532, 17 pages, 2011. View at Publisher · View at Google Scholar
  15. L. C. Sousa, S. P. Chundawat, V. Balan, and B. E. Dale, “‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 339–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Zhao, G. A. Baker, and J. V. Cowins, “Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids,” Biotechnology Progress, vol. 26, no. 1, pp. 127–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Li, B. Knierim, C. Manisseri et al., “Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification,” Bioresource Technology, vol. 101, no. 13, pp. 4900–4906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. I. P. Samayam, B. L. Hanson, P. Langan, and C. A. Schall, “Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis,” Biomacromolecules, vol. 12, no. 8, pp. 3091–3098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, “Dissolution of cellose with ionic liquids,” Journal of the American Chemical Society, vol. 124, no. 18, pp. 4974–4975, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Ionic Liquids, B. Kirchner, Ed., vol. 290 of Topics in Current Chemistry, Springer, New York, NY, USA, 2009.
  21. X. Zhao, K. Cheng, and D. Liu, “Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis,” Applied Microbiology and Biotechnology, vol. 82, no. 5, pp. 815–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Zavrel, D. Bross, M. Funke, J. Büchs, and A. C. Spiess, “High-throughput screening for ionic liquids dissolving (ligno-)cellulose,” Bioresource Technology, vol. 100, no. 9, pp. 2580–2587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Pu, N. Jiang, and A. J. Ragauskas, “Ionic liquid as a green solvent for lignin,” Journal of Wood Chemistry and Technology, vol. 27, no. 1, pp. 23–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Severa, G. Kumar, M. Troung, G. Young, and M. J. Cooney, “Simultaneous extraction and separation of phorbol esters and bio-oil from Jatropha biomass using ionic liquid-methanol co-solvents,” Separation and Purification Technology, vol. 116, pp. 265–270, 2013.
  25. G. Young, F. Nippgen, S. Titterbrandt, and M. J. Cooney, “Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules,” Separation and Purification Technology, vol. 72, no. 1, pp. 118–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Young, F. Nippgen, S. Titterbrandt, and M. J. Cooney, “Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules,” Separation and Purification Technology, vol. 72, no. 1, pp. 118–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Wei, Y. Zu, Y. Fu et al., “Ionic liquids-based microwave-assisted extraction of active components from pigeon pea leaves for quantitative analysis,” Separation and Purification Technology, vol. 102, pp. 75–81, 2013.
  28. D.-A. Z. Wever, H. J. Heeres, and A. A. Broekhuis, “Characterization of physic nut (Jatropha curcas L.) shells,” Biomass and Bioenergy, vol. 37, pp. 177–187, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. H. P. S. Makkar, K. Becker, F. Sporer, and M. Wink, “Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas,” Journal of Agricultural and Food Chemistry, vol. 45, no. 8, pp. 3152–3157, 1997. View at Scopus
  30. J. Martínez-Herrera, P. Siddhuraju, G. Francis, G. Dávila-Ortíz, and K. Becker, “Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico,” Food Chemistry, vol. 96, no. 1, pp. 80–89, 2006. View at Publisher · View at Google Scholar · View at Scopus