About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 752719, 7 pages
http://dx.doi.org/10.1155/2013/752719
Research Article

Fixed Bed Adsorption of Drugs on Silica Aerogel from Supercritical Carbon Dioxide Solutions

Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno via Giovanni Paolo II, 132-84084 Fisciano, Italy

Received 16 March 2013; Accepted 5 June 2013

Academic Editor: Jaime Wisniak

Copyright © 2013 Giuseppe Caputo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Pinnamaneni, N. G. Das, and S. K. Das, “Formulation approaches for orally administered poorly soluble drugs,” Pharmazie, vol. 57, no. 5, pp. 291–300, 2002. View at Scopus
  2. P. York, U. B. Kompella, and B. Y. Shekunov, Supercritical Fluid Technology for Drug Development, Marcel Dekker, New York, NY, USA, 2004.
  3. E. Reverchon, G. Caputo, S. Correra, and P. Cesti, “Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale,” Journal of Supercritical Fluids, vol. 26, no. 3, pp. 253–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Caputo, S. Liparoti, R. Adami, and E. Reverchon, “Use of supercritical CO2 and N2 as dissolved gases for the atomization of ethanol and water,” Industrial & Engineering Chemistry Research, vol. 51, no. 36, pp. 11803–11808, 2012.
  5. G. Caputo, R. Adami, and E. Reverchon, “Analysis of dissolved-gas atomization: supercritical CO2 dissolved in water,” Industrial & Engineering Chemistry Research, vol. 49, no. 19, pp. 9454–9461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Rodrigues, J. Li, L. Padrela, A. Almeida, H. A. Matos, and E. G. de Azevedo, “Anti-solvent effect in the production of lysozyme nanoparticles by supercritical fluid-assisted atomization processes,” Journal of Supercritical Fluids, vol. 48, no. 3, pp. 253–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. Hillery, A. W. Lloyd, and J. Swarbrick, Delivery und Targeting, Taylor & Francis, London, UK, 2001.
  8. I. Smirnova, S. Suttiruengwong, and W. Arlt, “Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems,” Journal of Non-Crystalline Solids, vol. 350, pp. 54–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Smirnova, S. Suttiruengwong, M. Seiler, and W. Arlt, “Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels,” Pharmaceutical Development and Technology, vol. 9, no. 4, pp. 443–452, 2005. View at Scopus
  10. U. Guenther, I. Smirnova, and R. H. H. Neubert, “Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 3, pp. 935–942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Smirnova, J. Mamic, and W. Arlt, “Adsorption of drugs on silica aerogels,” Langmuir, vol. 19, no. 20, pp. 8521–8525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Caputo, M. Scognamiglio, and I. De Marco, “Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide,” Chemical Engineering Research and Design, vol. 90, no. 8, pp. 1082–1089, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Caputo, I. De Marco, and E. Reverchon, “Silica aerogel-metal composites produced by supercritical adsorption,” Journal of Supercritical Fluids, vol. 54, no. 2, pp. 243–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. E. Treybal, Mass-Transfer Operations, McGraw-Hill, New York, NY, USA, 3rd edition, 1980.
  15. S. Liparoti, R. Adami, G. Caputo, and E. Reverchon, “Supercritical assisted atomization: polyvynilpyrrolidone as carrier for drugs with poor solubility in water,” Journal of Chemistry, vol. 2013, Article ID 801069, 5 pages, 2013. View at Publisher · View at Google Scholar
  16. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, “On a theory of the van der Waals adsorption of gases,” Journal of The American Chemical Society, vol. 62, no. 7, pp. 1723–1732, 1940. View at Scopus