About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 937675, 7 pages
http://dx.doi.org/10.1155/2013/937675
Research Article

The Application of Response Surface Methodology for Lead Ion Removal from Aqueous Solution Using Intercalated Tartrate-Mg-Al Layered Double Hydroxides

1INTEC Education College, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

Received 19 October 2012; Revised 15 January 2013; Accepted 19 January 2013

Academic Editor: Deepak Kunzru

Copyright © 2013 Yamin Yasin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Chen and S. Wu, “Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties,” Langmuir, vol. 20, no. 6, pp. 2233–2242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. V. K. Gupta, A. Rastogi, V. K. Saini, and N. Jain, “Biosorption of copper(II) from aqueous solutions by Spirogyra species,” Journal of Colloid and Interface Science, vol. 296, no. 1, pp. 59–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. U. K. Oubagaranadin and Z. V. P. Murthy, “Isotherm modeling and batch adsorber design for the adsorption of Cu(II) on a clay containing montmorillonite,” Applied Clay Science, vol. 50, no. 3, pp. 409–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, and Q. Zhang, “Heavy metal removal from water/wastewater by nanosized metal oxides,” Journal of Hazardous Materials, vol. 211, pp. 317–331, 2012.
  5. T. Kameda, H. Takeuchi, and T. Yoshioka, “Uptake of heavy metal ions from aqueous solution using Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate,” Separation and Purification Technology, vol. 62, no. 2, pp. 330–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, and N. Tase, “Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems,” Chemical Engineering Journal, vol. 172, no. 1, pp. 37–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Yasin, A. H. Abdul Malik, S. M. Sumari, and F. B. H. Ahmad, “Removal of amido black dye from aqueous solution by uncalcined and calcined hydrotalcite,” Research Journal of Chemistry and Environment, vol. 14, no. 1, pp. 78–84, 2010. View at Scopus
  8. Y. Yasin, A. H. Abdul Malik, and S. M. Sumari, “Adsorption of eriochrome black dye from aqueous solution onto anionic layered double hydroxides,” Oriental Journal of Chemistry, vol. 26, no. 4, pp. 1293–1298, 2010. View at Scopus
  9. T. Kameda, S. Saito, and Y. Umetsu, “Mg-Al layered double hydroxide intercalated with ethylene-diaminetetraacetate anion: synthesis and application to the uptake of heavy metal ions from an aqueous solution,” Separation and Purification Technology, vol. 47, no. 1-2, pp. 20–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Zhao, G. Sheng, J. Hu, C. Chen, and X. Wang, “The adsorption of Pb(II) on Mg2Al layered double hydroxide,” Chemical Engineering Journal, vol. 171, no. 1, pp. 167–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Cheng, X. Wang, C. Ma, and Z. Hao, “Novel Co-Mg-Al-Ti-O catalyst derived from hydrotalcite-like compound for NO storage/decomposition,” Journal of Environmental Science, vol. 24, no. 3, pp. 488–493, 2012.
  12. K. Ravikumar, S. Krishnan, S. Ramalingam, and K. Balu, “Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent,” Dyes and Pigments, vol. 72, no. 1, pp. 66–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. H. Myers and D. C. Montgomery, Response Surface Methodology, John Wiley and Sons, 2nd edition, 2001.
  14. Q. Liu and Y. Liu, “Distribution of Pb(II) species in aqueous solutions,” Journal of Colloid and Interface Science, vol. 268, no. 1, pp. 266–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Cavani and F. Trifirò, “Hydrotalcite-type anionic clays: preparation, properties and applications,” Catalysis Today, vol. 11, no. 2, pp. 173–301, 1991. View at Scopus
  16. M. Bellotto, B. Rebours, O. Clause, J. Lynch, D. Bazin, and E. Elkaïm, “A reexamination of hydrotalcite crystal chemistry,” Journal of Physical Chemistry, vol. 100, no. 20, pp. 8527–8534, 1996. View at Scopus
  17. K. Chibwe and W. Jones, “Intercalation of organic and inorganic anions into layered double hydroxides,” Journal of the Chemical Society, Chemical Communications, no. 14, pp. 926–927, 1989. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ravikumar, K. Pakshirajan, T. Swaminathan, and K. Balu, “Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent,” Chemical Engineering Journal, vol. 105, no. 3, pp. 131–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Yasin, A. H. Abdul Malek, and F. H. Ahmad, “Response surface methodology study on removal of humic acid from aqueous solutions using anionic clay hydrotalcite,” Journal of Applied Sciences, vol. 10, no. 19, pp. 2297–2303, 2010. View at Scopus
  20. Y. Yus Azila, M. D. Mashitah, and S. Bhatia, “Process optimization studies of lead (Pb(II)) biosorption onto immobilized cells of Pycnoporus sanguineus using response surface methodology,” Bioresource Technology, vol. 99, no. 18, pp. 8549–8552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. H. Hasan, P. Srivastava, and M. Talat, “Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila: central composite design for optimization of process variables,” Journal of Hazardous Materials, vol. 168, no. 2-3, pp. 1155–1162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Zheng and A. Wang, “Removal of heavy metals using polyvinyl alcohol semi-IPN poly(acrylic acid)/tourmaline composite optimized with response surface methodology,” Chemical Engineering Journal, vol. 162, no. 1, pp. 186–193, 2010. View at Publisher · View at Google Scholar · View at Scopus