About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2014 (2014), Article ID 347912, 13 pages
Review Article

Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review

1School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
2School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
3School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia

Received 24 February 2014; Revised 5 June 2014; Accepted 6 June 2014; Published 24 June 2014

Academic Editor: Iftekhar A. Karimi

Copyright © 2014 Haider M. Zwain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This review examines a variety of adsorbents and discusses mechanisms, modification methods, recovery and regeneration, and commercial applications. A summary of available researches has been composed by a wide range of potentially low-cost modified adsorbents including activated carbon, natural source adsorbents (clay, bentonite, zeolite, etc.), biosorbents (black gram husk, sugar-beet pectin gels, citrus peels, banana and orange peels, carrot residues, cassava waste, algae, algal, marine green macroalgae, etc.), and byproduct adsorbents (sawdust, lignin, rice husk, rice husk ash, coal fly ash, etc.). From the literature survey, different adsorbents were compared in terms of Zn2+ adsorption capacity; also Zn2+ adsorption capacity was compared with other metals adsorption. Thus, some of the highest adsorption capacities reported for Zn2+ are 168 mg/g powdered waste sludge, 128.8 mg/g dried marine green macroalgae, 73.2 mg/g lignin, 55.82 mg/g cassava waste, and 52.91 mg/g bentonite. Furthermore, modification of adsorbents can improve adsorption capacity. Regeneration cost is important, but if consumption of virgin adsorbent is reduced, then multiple economic, industrial, and environmental benefits can be gained. Finally, the main drawback of the already published Zn2+ adsorption researches is that their use is still in the laboratory stage mostly without scale-up, pilot studies, or commercialization.