About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2014 (2014), Article ID 358241, 10 pages
http://dx.doi.org/10.1155/2014/358241
Research Article

Experimental Investigation of the Interaction between Rising Bubbles and Swirling Water Flow

1EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
2Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Received 16 August 2013; Accepted 1 November 2013; Published 16 January 2014

Academic Editor: Mostafa Barigou

Copyright © 2014 Tomomi Uchiyama and Shunsuke Sasaki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Hussain and R. Siegel, “Liquid jet pumped by rising gas bubbles,” Transactions of the ASME, Journal of Fluids Engineering, vol. 98, no. 1, pp. 49–57, 1976. View at Scopus
  2. A. M. Leitch and W. D. Baines, “Liquid volume flux in a weak bubble plume,” Journal of Fluid Mechanics, vol. 205, pp. 77–98, 1989. View at Scopus
  3. J. H. Milgram, “Mean flow in round bubble plumes,” Journal of Fluid Mechanics, vol. 133, pp. 345–376, 1983. View at Scopus
  4. S. A. Socolofsky and E. E. Adams, “Role of slip velocity in the behavior of stratified multiphase plumes,” Journal of Hydraulic Engineering, vol. 131, no. 4, pp. 273–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Alam and V. H. Arakeri, “Observations on transition in plane bubble plumes,” Journal of Fluid Mechanics, vol. 254, pp. 363–374, 1993. View at Scopus
  6. T. Uchiyama and S. Matsumura, “Three-dimensional vortex method for the simulation of bubbly flow,” Transactions of the ASME, Journal of Fluids Engineering, vol. 132, no. 10, Article ID 101402, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Uchiyama and Y. Yoshii, “Numerical simulation of bubbly flow by vortex in cell method,” Procedia IUTAM. In press.
  8. P. M. Rightley and J. C. Lasheras, “Bubble dispersion and interphase coupling in a free-shear flow,” Journal of Fluid Mechanics, vol. 412, pp. 21–59, 2000. View at Scopus
  9. R. Milenkovic, B. Sigg, and G. Yadigaroglu, “Study of periodically excited bubbly jets by PIV and double optical sensors,” International Journal of Heat and Fluid Flow, vol. 26, no. 6, pp. 922–930, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Ž. Milenković, B. Sigg, and G. Yadigaroglu, “Bubble clustering and trapping in large vortices. Part 1: triggered bubbly jets investigated by phase-averaging,” International Journal of Multiphase Flow, vol. 33, no. 10, pp. 1088–1110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Uchiyama, “Three-dimensional vortex simulation of bubble dispersion in excited round jet,” Chemical Engineering Science, vol. 59, no. 7, pp. 1403–1413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Uchiyama and S. Kusamichi, “Interaction of bubbles with vortex ring launched into bubble plume,” Advances in Chemical Engineering and Science, vol. 3, pp. 207–217, 2013.
  13. Y. Tanaka, R. Suzuki, K. Arai, K. Iwamoto, and K. Kawazura, “Visualization of flow fields in a bubble eliminator,” Journal of Visualization, vol. 4, no. 1, pp. 81–90, 2001. View at Scopus
  14. K. Tabei, S. Haruyama, S. Yamaguchi, H. Shirai, and F. Takakusagi, “Study of micro bubble generation by a swirl jet (Measurement of bubble distribution by light transmission and characteristics of generation bubbles),” The Japan Society of Mechanical Engineers Main, vol. 2, pp. 172–182, 2007.
  15. F. Magaud, A. F. Najafi, J. R. Angilella, and M. Souhar, “Modeling and qualitative experiments on swirling bubbly flows: single bubble with rossby number of order 1,” Transactions of the ASME, Journal of Fluids Engineering, vol. 125, no. 2, pp. 239–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Murakami and K. Minemura, “Effects of entrained air on the performance of a centrifugal pump, (1st report, Performance and flow conditions),” Bulletin of JSME, vol. 17, no. 110, pp. 1047–1055, 1974. View at Scopus