About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2014 (2014), Article ID 954632, 7 pages
http://dx.doi.org/10.1155/2014/954632
Research Article

Optimization of Two-Step Acid-Catalyzed Hydrolysis of Oil Palm Empty Fruit Bunch for High Sugar Concentration in Hydrolysate

1Institute of Chemical & Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
2Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576

Received 10 December 2013; Accepted 18 May 2014; Published 11 June 2014

Academic Editor: Doraiswami Ramkrishna

Copyright © 2014 Dongxu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. A. Rahman, J. P. Choudhury, A. L. Ahmad, and A. H. Kamaruddin, “Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose,” Bioresource Technology, vol. 98, no. 3, pp. 554–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Hassan, A. A. Salema, F. N. Ani, and A. A. Bakar, “A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials,” Polymer Composites, vol. 31, no. 12, pp. 2079–2101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Piarpuzán, J. A. Quintero, and C. A. Cardona, “Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production,” Biomass and Bioenergy, vol. 35, no. 3, pp. 1130–1137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Zhang, Y. L. Ong, Z. Li, and J. C. Wu, “Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose,” Chemical Engineering Journal, vol. 181-182, pp. 636–642, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Jawaid and H. P. S. Abdul Khalil, “Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review,” Carbohydrate Polymers, vol. 86, no. 1, pp. 1–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-H. Kim, D. E. Block, S. P. Shoemaker, and D. A. Mills, “Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis,” Applied Microbiology and Biotechnology, vol. 86, no. 5, pp. 1375–1385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Chandel, C. ES, R. Rudravaram, M. L. Narasu, L. V. Rao, and P. Ravindra, “Economics and environmental impact of bioethanol production technologies: an appraisal,” Biotechnology and Molecular Biology Reviews, vol. 2, no. 1, pp. 14–32, 2007.
  8. R. C. Kuhad and A. Singh, “Lignocellulose biotechnology. Current and future prospects,” Critical Reviews in Biotechnology, vol. 13, no. 2, pp. 151–172, 1993. View at Scopus
  9. R. Fogel, R. R. Garcia, R. da Silva Oliveira, D. N. M. Palacio, L. da Silva Madeira, and N. Pereira Jr., “Optimization of acid hydrolysis of sugarcane bagasse and investigations on its fermentability for the production of xylitol by Candida guilliermondii,” Applied Biochemistry and Biotechnology A, vol. 122, no. 1–3, pp. 741–752, 2005. View at Scopus
  10. C. Martin, B. Alriksson, A. Sjöde, N.-O. Nilvebrant, and L. J. Jönsson, “Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production,” Applied Biochemistry and Biotechnology, vol. 137–140, no. 1–12, pp. 339–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T.-S. Jeong, B.-H. Um, J.-S. Kim, and K.-K. Oh, “Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose,” Applied Biochemistry and Biotechnology, vol. 161, no. 1–8, pp. 22–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. L. Demain, “Small bugs, big business: the economic power of the microbe,” Biotechnology Advances, vol. 18, no. 6, pp. 499–514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Tao, R. Gonzalez, A. Martinez et al., “Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation,” Journal of Bacteriology, vol. 183, no. 10, pp. 2979–2988, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Sedlak, H. J. Edenberg, and N. W. Y. Ho, “DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast,” Enzyme and Microbial Technology, vol. 33, no. 1, pp. 19–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Herrera, S. J. Téllez-Luis, J. A. Ramírez, and M. Vázquez, “Production of xylose from sorghum straw using hydrochloric acid,” Journal of Cereal Science, vol. 37, no. 3, pp. 267–274, 2003.
  16. G.-L. Guo, W.-H. Chen, W.-H. Chen, L.-C. Men, and W.-S. Hwang, “Characterization of dilute acid pretreatment of silvergrass for ethanol production,” Bioresource Technology, vol. 99, no. 14, pp. 6046–6053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Yan, H. Zhang, J. Chen et al., “Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery,” Bioresource Technology, vol. 100, no. 5, pp. 1803–1808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. W. McKibbins, Kinetics of the Acid Catalyzed Conversion of Glucose to 5-Hydroxymethyl-2-Furaldehyde and Levulinic Acid, Department of Chemical Engineering, University of Wisconsin, Madison, Wis, USA, 1958.
  19. S. W. McKibbins, J. F. Harris, J. F. Saeman, and W. K. Neill, “Kinetics of the acid-catalyzed conversion of glucose to 5-hydroxymethyl-2-furaldehyde and levulinic acid,” Forest Products Journal, vol. 12, no. 1, pp. 17–23, 1962.
  20. J. J. McParland, H. E. Grethlein, and A. O. Converse, “Kinetics of acid hydrolysis of corn stover,” Solar Energy, vol. 28, no. 1, pp. 55–63, 1982. View at Scopus
  21. J. F. Saeman, “Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature,” Industrial and Engineering Chemistry, vol. 37, no. 1, pp. 43–52, 1945.
  22. S. E. Jacobsen and C. E. Wyman, “Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes,” Applied Biochemistry and Biotechnology A, vol. 84–86, no. 1–9, pp. 81–96, 2000. View at Scopus
  23. Y. Lu and N. S. Mosier, “Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover,” Biotechnology and Bioengineering, vol. 101, no. 6, pp. 1170–1181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kobayashi and Y. Sakai, “Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid,” Bulletin of the Chemical Society of Japan, vol. 20, no. 1, pp. 1–7, 1956.
  25. A. Esteghlalian, A. G. Hashimoto, J. J. Fenske, and M. H. Penner, “Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass,” Bioresource Technology, vol. 59, no. 2-3, pp. 129–136, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. J. F. Harris, A. J. Baker, A. H. Conner, et al., Two-Stage, Dilute Sulfuric Acid Hydrolysis of Wood: An Investigation of Fundamentals, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wis, USA, 1985.