About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2014 (2014), Article ID 986719, 10 pages
http://dx.doi.org/10.1155/2014/986719
Research Article

Product Characterization and Kinetics of Biomass Pyrolysis in a Three-Zone Free-Fall Reactor

School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Received 19 September 2013; Revised 24 November 2013; Accepted 28 November 2013; Published 4 February 2014

Academic Editor: Deepak Kunzru

Copyright © 2014 Natthaya Punsuwan and Chaiyot Tangsathitkulchai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. McKendry, “Energy production from biomass (part 2): conversion technologies,” Bioresource Technology, vol. 83, no. 1, pp. 47–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Jain, S. K. Sharma, and D. Singh, Reaction Kinetics of Paddy Husk Thermal Decomposition, Energy Research Center Panjab University, Panjab, India, 1996.
  3. C. Acıkgoz, O. Onay, and O. M. Kockar, “Fast pyrolysis of linseed: product yields and compositions,” Journal of Analytical and Applied Pyrolysis, vol. 71, no. 2, pp. 417–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. W. T. Tsai, M. K. Lee, and Y. M. Chang, “Fast pyrolysis of rice husk: product yields and compositions,” Bioresource Technology, vol. 98, no. 1, pp. 22–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Natural Resources Management and Environment Department, “Integrated Energy System in China—The Cold Northeastern Region Experience,” http://www.fao.org/docrep/T4470E/T4470E00.htm.
  6. J. Lehto, “Determination of kinetic parameters for Finnish milled peat using drop tube reactor and optical measurement techniques,” Fuel, vol. 86, no. 12-13, pp. 1656–1663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Safi, I. M. Mishra, and B. Prasad, “Global degradation kinetics of pine needles in air,” Thermochimica Acta, vol. 412, no. 1-2, pp. 155–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Nugranad, Pyrolysis of biomass [Ph.D. thesis], University of Leeds Department of Fuel and Enegy, 1997.
  9. P. Luangkiattikhun, C. Tangsathitkulchai, and M. Tangsathitkulchai, “Non-isothermal thermogravimetric analysis of oil-palm solid wastes,” Bioresource Technology, vol. 99, no. 5, pp. 986–997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hu, A. Jess, and M. Xu, “Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models,” Fuel, vol. 86, no. 17-18, pp. 2778–2788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. G. Baker and D. C. Elliott, “Catalytic hydrotreating of biomass—derived oil,” in Pyrolysis Oils From Viomass, American Chemical Society, 1988.
  12. Q. Wu, J. Dai, Y. Shiraiwa, G. Sheng, and J. Fu, “A renewable energy source—hydrocarbon gases resulting from pyrolysis of the marine nanoplanktonic alga Emiliania huxleyi,” Journal of Applied Phycology, vol. 11, no. 2, pp. 137–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hutagalung, “Understanding coal analysis,” Majari Magazine, 2008, http://majarimagazine.com/2008/06/understanding-coal-sample-analysis/.
  14. A. Demirbas, “Combustion characteristics of different biomass fuels,” Progress in Energy and Combustion Science, vol. 30, no. 2, pp. 219–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. B. R. Miller, “Structure of Wood,” http://www.fpl.fs.fed.us/document/fplgtr/fplgtr113/ch02.pdf.
  16. M. V. Dagaonkar, A. A. C. M. Beenackers, and V. G. Pangarkar, “Enhancement of gas-liquid mass transfer by small reactive particles at realistically high mass transfer coefficients: absorption of sulfur dioxide into aqueous slurries of Ca(OH)2 and Mg(OH)2 particles,” Chemical Engineering Journal, vol. 81, no. 1–3, pp. 203–212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “Torrefaction of wood. Part 1. Weight loss kinetics,” Journal of Analytical and Applied Pyrolysis, vol. 77, no. 1, pp. 28–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. B. Wooten, J. I. Seeman, and M. R. Hajaligol, “Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model,” Energy and Fuels, vol. 18, no. 1, pp. 1–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Mohan, C. U. Pittman Jr., and P. H. Steele, “Pyrolysis of wood/biomass for bio-oil: a critical review,” Energy and Fuels, vol. 20, no. 3, pp. 848–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Wei, S. Xu, L. Zhang et al., “Characteristics of fast pyrolysis of biomass in a free fall reactor,” Fuel Processing Technology, vol. 87, no. 10, pp. 863–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Onay and O. M. Koçkar, “Pyrolysis of rapeseed in a free fall reactor for production of bio-oil,” Fuel, vol. 85, no. 12-13, pp. 1921–1928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. H. Patrick and T. Williams, “Influence of temperature on the products from the flash pyrolysis of biomass,” Fuel, vol. 75, no. 9, pp. 1051–1059, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. B. B. Uzun, A. E. Pütün, and E. Pütün, “Fast pyrolysis of soybean cake: product yields and compositions,” Bioresource Technology, vol. 97, pp. 569–576, 2006.
  24. E. Jorjani, J. C. Hower, S. Chehreh Chelgani, M. A. Shirazi, and S. Mesroghli, “Studies of relationship between petrography and elemental analysis with grindability for Kentucky coals,” Fuel, vol. 87, no. 6, pp. 707–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Abnisa, W. M. A. Wan Daud, W. N. W. Husin, and J. Sahu, “Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process,” Biomass and Bioenergy, vol. 35, no. 5, pp. 1863–1872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Hu, Y. Xu, X. Hu, L. Pan, and S. Jiang, “Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol,” Renewable Energy, vol. 37, no. 1, pp. 371–378, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Czernik, Environment Health and Safety in Fast Pyrolysis of Biomass, vol. 1, CPL Press, Newbury, UK, 1999.
  28. H. E. Saleh, “The preparation and shock tube investigation of comparative ignition delays using blends of diesel fuel with bio-diesel of cottonseed oil,” Fuel, vol. 90, no. 1, pp. 421–429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. C. D. Blasi, G. Signorelli, C. D. Russo, and G. Rea, “Product distribution from pyrolysis of wood and agricultural residues,” Industrial and Engineering Chemistry Research, vol. 38, no. 6, pp. 2216–2224, 1999. View at Scopus