About this Journal Submit a Manuscript Table of Contents
International Journal of Computer Games Technology
Volume 2011 (2011), Article ID 570210, 7 pages
http://dx.doi.org/10.1155/2011/570210
Research Article

Out of the Cube: Augmented Rubik's Cube

1Department of Computer Science, Ben-Gurion University of the Negev, P.O.B 653 Be'er Sheva 84105, Israel
2Screen-Based Arts, Bezalel Academy of Arts and Design, Jerusalem 91240, Israel

Received 23 January 2011; Accepted 2 May 2011

Academic Editor: Suiping Zhou

Copyright © 2011 Oriel Bergig et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Bolter and R. Grusin, Remediation: Understanding New Media, MIT Press, Cambridge, Mass, USA, 2000.
  2. L. A. William, “The Rubik's cube: a puzzling success,” Time, 2009.
  3. A. Jamieson, “Rubik's cube inventor is back with Rubik's 360,” The Daily Telegraph, 2009.
  4. Z. Z. Ying, C. A. David, L. Yu, and K. Hirokazu, “Magic cubes for social and physical family entertainment,” in Proceedings of the International Conference for Human-Computer Interaction (CHI '05), pp. 1156–1157, Portland, Ore, USA, 2005.
  5. Z. Z. Ying, C. A. David, C. Tingting, and L. Yu, “Jumanji Singapore: an interactive 3D board game turning hollywood fantasy into reality,” in Proceedings of the International Conference on Advances in Computer Entertainment Technology (ACM SIGCHI '04), 2004.
  6. G. A. Lee, M. Billinghurst, and G. J. Kim, “Occlusion based interaction methods for tangible augmented reality environments,” in Proceedings of the ACM SIGGRAPH International Conference on Virtual Reality Continuum and its Applications in Industry (VRCAI '04), pp. 419–426, June 2004.
  7. M. Billinghurst, H. Kato, and I. Poupyrev, “Tangible augmented reality,” in Proceedings of the ACM SIGGRAPH ASIA courses, December 2008. View at Publisher · View at Google Scholar
  8. B. Thomas, B. Close, J. Donoghue, J. Squirs, P. De Bondi, and W. Piekarski, “ARQuake: an outdoor/indoor augmented reality first person application,” Journal of Personal and Ubiquitous Computing, vol. 6, no. 1, 2002.
  9. A. D. Cheok, S. W. Fong, K. H. Goh, et al., “Pacman: a mobile entertainment system with ubiquitous computing and tangible interaction over a wide outdoor area,” in Proceedings of the 5th International Symposium Human-Computer Interaction with Mobile Devices and Services, vol. 2795, pp. 209–223, Udine, Italy, September, 2003.
  10. D. Wagner, T. Pintaric, F. Ledermann, and D. Schmalstieg, “Towards massively multi-user augmented reality on handheld devices,” in Proceedings of the 3rd International Conference on Pervasive Computing, pp. 208–219, May 2005.
  11. M. Rohs, “Marker-based embodied interaction for handheld augmented reality games,” Journal of Virtual Reality and Broadcasting, vol. 4, no. 5, 2007.
  12. M. Weilguny, Design aspects in augmented reality games, Diploma thesis, 2006.
  13. I. Barakonyi, M. Weilguny, T. Psik, and D. Schmalstieg, “MonkeyBridge: autonomous agents in augmented reality games,” in Proceedings of the International Conference on Advances in Computer Entertainment Technology (ACM SIGCHI '05), 2005.
  14. S. Hinske and M. Langheinrich, “W41K: digitally augmenting traditional game environments,” in Proceedings of the 3rd International Conference on Tangible and Embedded Interaction (TEI'09), pp. 99–106, USA, February 2009. View at Publisher · View at Google Scholar
  15. J. J. LaViola, “Double exponential smoothing: an alternative to Kalman filter-based predictive tracking,” in Proceedings of the Work-Shop on Virtual Environments, pp. 199–206, 2003.
  16. S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 24, pp. 509–522, 2002.