`International Journal of CombinatoricsVolume 2011 (2011), Article ID 432738, 12 pageshttp://dx.doi.org/10.1155/2011/432738`
Research Article

## Identities of Symmetry for Generalized Euler Polynomials

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

Received 10 January 2011; Accepted 15 February 2011

Copyright © 2011 Dae San Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. N. Koblitz, â€śA new proof of certain formulas for $p$-adic $L$-functions,â€ť Duke Mathematical Journal, vol. 46, no. 2, pp. 455â€“468, 1979.
2. E. Y. Deeba and D. M. Rodriguez, â€śStirling's series and Bernoulli numbers,â€ť The American Mathematical Monthly, vol. 98, no. 5, pp. 423â€“426, 1991.
3. F. T. Howard, â€śApplications of a recurrence for the Bernoulli numbers,â€ť Journal of Number Theory, vol. 52, no. 1, pp. 157â€“172, 1995.
4. T. Kim, â€śSymmetry $p$-adic invariant integral on ${ℤ}_{p}$ for Bernoulli and Euler polynomials,â€ť Journal of Difference Equations and Applications, vol. 14, no. 12, pp. 1267â€“1277, 2008.
5. H. J. H. Tuenter, â€śA symmetry of power sum polynomials and Bernoulli numbers,â€ť The American Mathematical Monthly, vol. 108, no. 3, pp. 258â€“261, 2001.
6. S.-l. Yang, â€śAn identity of symmetry for the Bernoulli polynomials,â€ť Discrete Mathematics, vol. 308, no. 4, pp. 550â€“554, 2008.
7. D. S. Kim and K. H. Park, â€śIdentities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under ${S}_{3}$,â€ť submitted.
8. D. S. Kim, â€śIdentities of symmetry for generalized Bernoulli polynomials,â€ť submitted.
9. D. S. Kim and K. H. Park, â€śIdentities of symmetry for Euler polynomials arising from quotients of fermionic integrals invariant under ${S}_{3}$,â€ť Journal of Inequalities and Applications, Article ID 851521, 16 pages, 2010.
10. T. Kim, â€śA note on the generalized Euler numbers and polynomials,â€ť http://arxiv.org/abs/0907.4889.