About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2011 (2011), Article ID 237045, 12 pages
http://dx.doi.org/10.1155/2011/237045
Research Article

Homotopy Analysis Method for Solving Foam Drainage Equation with Space- and Time-Fractional Derivatives

Department of Mathematics, Neyshabour Branch, Islamic Azad University, Neyshabour, Iran

Received 4 May 2011; Accepted 12 May 2011

Academic Editor: Shaher M. Momani

Copyright © 2011 Hadi Hosseini Fadravi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Blank, “Numerical treatment of differential equations of fractional order,” Numerical Analysis Report 287, The University of Manchester, Manchester, UK, 1996.
  2. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent,” Journal of the Royal Australian Historical Society, vol. 13, part 2, pp. 529–539, 1967.
  3. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.
  4. S. Momani and N. T. Shawagfeh, “Decomposition method for solving fractional Riccati differential equations,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1083–1092, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. Z. Odibat and S. Momani, “Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order,” Chaos, Solitons and Fractals, vol. 36, no. 1, pp. 167–174, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. Z. Odibat and S. Momani, “Application of variation iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 1, no. 7, pp. 15–27, 2006.
  7. A. S. Bataineh, A. K. Alomari, M. S. M. Noorani, I. Hashim, and R. Nazar, “Series solutions of systems of nonlinear fractional differential equations,” Acta Applicandae Mathematicae, vol. 105, no. 2, pp. 189–198, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. M. Dehghan, J. Manafian, and A. Saadatmandi, “Solving nonlinear fractional partial differential equations using the homotopy analysis method,” Numerical Methods for Partial Differential Equations, vol. 26, no. 2, pp. 448–479, 2010. View at Zentralblatt MATH
  9. S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, 1992.
  10. S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2003.
  11. S. J. Liao, “On the homotopy analysis method for nonlinear problems,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 499–513, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. S. J. Liao, “Comparison between the homotopy analysis method and homotopy perturbation method,” Applied Mathematics and Computation, vol. 169, no. 2, pp. 1186–1194, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. S. J. Liao, “Homotopy analysis method: a new analytical technique for nonlinear problems,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 2, pp. 95–100, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. T. Hayat, M. Khan, and M. Ayub, “On non-linear flows with slip boundary condition,” Zeitschrift für Angewandte Mathematik und Physik, vol. 56, no. 6, pp. 1012–1029, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  15. S. Abbasbandy, “Soliton solutions for the 5th-order KdV equation with the homotopy analysis method,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 83–87, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. H. Jafari, M. Saeidy, and M. A. Firoozjaee, “The homotopy analysis method for solving higher dimensional initial boundary value problems of variable coefficients,” Numerical Methods for Partial Differential Equations, vol. 26, no. 5, pp. 1021–1032, 2010. View at Zentralblatt MATH
  17. S. P. Zhu, “An exact and explicit solution for the valuation of American put options,” Quantitative Finance, vol. 6, no. 3, pp. 229–242, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. D. Weaire and S. Hutzler, The Physic of Foams, Oxford University Press, Oxford, UK, 2000.
  19. D. Weaire, S. Hutzler, S. Cox, M. D. Alonso, and D. Drenckhan, “The fluid dynmaics of foams,” Journal of Physics: Condensed Matter, vol. 15, pp. 65–72, 2003. View at Publisher · View at Google Scholar
  20. M. A. Helal and M. S. Mehanna, “The tanh method and Adomian decomposition method for solving the foam drainage equation,” Applied Mathematics and Computation, vol. 190, no. 1, pp. 599–609, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. S. Hilgenfeldt, S. A. Koehler, and H. A. Stone, “Dynamics of coarsening foams: accelerated and self-limiting drainage,” Physical Review Letters, vol. 86, no. 20, pp. 4704–4707, 2001. View at Publisher · View at Google Scholar
  22. G. Verbist, D. Weaire, and A. M. Kraynik, “The foam drainage equation,” Journal of Physics Condensed Matter, vol. 8, no. 21, pp. 3715–3731, 1996. View at Publisher · View at Google Scholar
  23. Z. Dahmani, M. M. Mesmoudi, and R. Bebbouchi, “The foam drainage equation with time- and space-fractional derivatives solved by the Adomian method,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 30, pp. 1–10, 2008. View at Zentralblatt MATH
  24. Z. Dahmani and A. Anber, “The variational iteration method for solving the fractional foam drainage equation,” International Journal of Nonlinear Science, vol. 10, no. 1, pp. 39–45, 2010.
  25. B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003.
  26. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993.
  27. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
  28. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999.
  29. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet