About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2011 (2011), Article ID 545607, 15 pages
http://dx.doi.org/10.1155/2011/545607
Research Article

Solving Famous Nonlinear Coupled Equations with Parameters Derivative by Homotopy Analysis Method

Department of Applied Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91779-48974, Iran

Received 15 May 2011; Accepted 4 July 2011

Academic Editor: Shaher M. Momani

Copyright © 2011 Sohrab Effati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent, part II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, no. 5, pp. 529–539, 1967. View at Publisher · View at Google Scholar
  2. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.
  3. S. Momani and N. Shawagfeh, “Decomposition method for solving fractional Riccati differential equations,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1083–1092, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. Z. Odibat and S. Momani, “Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order,” Chaos, Solitons and Fractals, vol. 36, no. 1, pp. 167–174, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. Z. Odibat and S. Momani, “Application of variation iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 1, no. 7, pp. 15–27, 2006.
  6. S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, 1992.
  7. S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Series: Modern Mechanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2003.
  8. S. Liao, “On the homotopy anaylsis method for nonlinear problems,” Applied Mathematics and Computation, vol. 147, pp. 499–513, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. S. Liao, “Comparison between the homotopy analysis method and homotopy perturbation method,” Applied Mathematics and Computation, vol. 169, no. 2, pp. 1186–1194, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. Liao, “Homotopy analysis method: a new analytical technique for nonlinear problems,” Journal of Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 2, pp. 95–100, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. T. Hayat, M. Khan, and M. Ayub, “On non-linear flows with slip boundary condition,” Zeitschrift für Angewandte Mathematik und Physik, vol. 56, no. 6, pp. 1012–1029, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  12. S. Abbasbandy and F. S. Zakaria, “Soliton solutions for the 5th-order KdV equation with the homotopy analysis method,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 83–87, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. S. P. Zhu, “An exact and explicit solution for the valuation of American put options,” Quantitative Finance, vol. 6, no. 3, pp. 229–242, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. A. K. Alomari, M. S. M. Noorani, R. Nazar, and C. P. Li, “Homotopy analysis method for solving fractional Lorenz system,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1864–1872, 2010. View at Publisher · View at Google Scholar
  15. A. K. Alomari, M. S. M. Noorani, and R. Nazar, “Solution of delay differential equation by means of homotopy analysis method,” Acta Applicandae Mathematicae, vol. 108, no. 2, pp. 395–412, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Institute for Nonlinear Science, Springer, New York, NY, USA, 2003.
  17. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993.
  18. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993.
  19. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  20. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. Y. Chen and H. An, “Homotopy perturbation method for a type of nonlinear coupled equations with parameters derivative,” Applied Mathematics and Computation, vol. 204, no. 2, pp. 764–772, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. E. G. Fan, “Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation,” Physics Letters. A, vol. 282, no. 1-2, pp. 18–22, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet