Abstract

The author discusses the multiple positive solutions for an infinite boundary value problem of first-order impulsive superlinear integrodifferential equations on the half line in a Banach space by means of the fixed point theorem of cone expansion and compression with norm type.

1. Introduction

Let ๐ธ be a real Banach space and ๐‘ƒ a cone in ๐ธ which defines a partial ordering in ๐ธ by ๐‘ฅโ‰ค๐‘ฆ if and only if ๐‘ฆโˆ’๐‘ฅโˆˆ๐‘ƒ. ๐‘ƒ is said to be normal if there exists a positive constant ๐‘ such that ๐œƒโ‰ค๐‘ฅโ‰ค๐‘ฆ implies ||๐‘ฅ||โ‰ค๐‘||๐‘ฆ||, where ๐œƒ denotes the zero element of ๐ธ and the smallest ๐‘ is called the normal constant of ๐‘ƒ. If ๐‘ฅโ‰ค๐‘ฆ and ๐‘ฅโ‰ ๐‘ฆ, we write ๐‘ฅ<๐‘ฆ. For details on cone theory, see [1].

In paper [2], we considered the infinite boundary value problem (IBVP) for first-order impulsive nonlinear integrodifferential equation of mixed type on the half line in ๐ธ: ๐‘ข๎…ž||(๐‘ก)=๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก)),โˆ€๐‘กโˆˆ๐ฝโ€ฒ,ฮ”๐‘ข๐‘ก=๐‘ก๐‘˜=๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ(๐‘˜=1,2,3,โ€ฆ),๐‘ข(โˆž)=๐›ฝ๐‘ข(0),(1.1) where ๐ฝ=[0,โˆž), 0<๐‘ก1<โ‹ฏ<๐‘ก๐‘˜<โ€ฆ,๐‘ก๐‘˜โ†’โˆž, ๐ฝโ€ฒ=๐ฝโงต{๐‘ก1,โ€ฆ,๐‘ก๐‘˜,โ€ฆ}, ๐‘“โˆˆ๐ถ[๐ฝร—๐‘ƒร—๐‘ƒร—๐‘ƒ,๐‘ƒ], ๐ผ๐‘˜โˆˆ๐ถ[๐‘ƒ,๐‘ƒ] (๐‘˜=1,2,3,โ€ฆ), ๐›ฝ>1, ๐‘ข(โˆž)=lim๐‘กโ†’โˆž๐‘ข(๐‘ก), and (๎€œ๐‘‡๐‘ข)(๐‘ก)=๐‘ก0๎€œ๐พ(๐‘ก,๐‘ )๐‘ข(๐‘ )๐‘‘๐‘ ,(๐‘†๐‘ข)(๐‘ก)=โˆž0๐ป(๐‘ก,๐‘ )๐‘ข(๐‘ )๐‘‘๐‘ ,(1.2)๐พโˆˆ๐ถ[๐ท,๐‘…+], ๐ท={(๐‘ก,๐‘ )โˆˆ๐ฝร—๐ฝโˆถ๐‘กโ‰ฅ๐‘ }, ๐ปโˆˆ๐ถ[๐ฝร—๐ฝ,๐‘…+],๐‘…+ denotes the set of all nonnegative numbers. ฮ”๐‘ข|๐‘ก=๐‘ก๐‘˜ denotes the jump of ๐‘ข(๐‘ก) at ๐‘ก=๐‘ก๐‘˜, that is, ||ฮ”๐‘ข๐‘ก=๐‘ก๐‘˜๎€ท๐‘ก=๐‘ข+๐‘˜๎€ธ๎€ท๐‘กโˆ’๐‘ขโˆ’๐‘˜๎€ธ,(1.3) where ๐‘ข(๐‘ก+๐‘˜) and ๐‘ข(๐‘กโˆ’๐‘˜) represent the right and left limits of ๐‘ข(๐‘ก) at ๐‘ก=๐‘ก๐‘˜, respectively. By using the fixed point index theory, we discussed the multiple positive solutions of IBVP(1.1). But the discussion dealt with sublinear equations, that is, we assume that there exists ๐‘โˆˆ๐ถ[๐ฝ,๐‘…+]โˆฉ๐ฟ[๐ฝ,๐‘…+] such that (โ€–๐‘“๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ€–๐‘(๐‘ก)(โ€–๐‘ขโ€–+โ€–๐‘ฃโ€–+โ€–๐‘คโ€–)โŸถ0as๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ,โ€–๐‘ขโ€–+โ€–๐‘ฃโ€–+โ€–๐‘คโ€–โŸถโˆž(1.4) uniformly for ๐‘กโˆˆ๐ฝ (see condition (๐ป5) in [2]).

Now, in this paper, we discuss the multiple positive solutions of an infinite three-point boundary value problem (which includes IBVP(1.1) as a special case) for superlinear case by means of different method, that is, by using the fixed point theorem of cone expansion and compression with norm type, which was established by the author in [3] (see also [1]), and the key point is to introduce a new cone ๐‘„.

Consider the infinite three-point boundary value problem for first-order impulsive nonlinear integrodifferential equation of mixed type on the half line in ๐ธ: ๐‘ข๎…ž||(๐‘ก)=๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก)),โˆ€๐‘กโˆˆ๐ฝโ€ฒ,ฮ”๐‘ข๐‘ก=๐‘ก๐‘˜=๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ(๐‘˜=1,2,3,โ€ฆ),๐‘ข(โˆž)=๐›พ๐‘ข(๐œ‚)+๐›ฝ๐‘ข(0),(1.5) where 0โ‰ค๐›พ<1,๐›ฝ+๐›พ>1, and ๐‘ก๐‘šโˆ’1<๐œ‚โ‰ค๐‘ก๐‘š (for some ๐‘š). It is clear that IBVP(1.5) includes IBVP(1.1) as a special case when ๐›พ=0.

Let PC[๐ฝ,๐ธ]={๐‘ขโˆถ๐‘ข is a map from ๐ฝ into ๐ธ such that ๐‘ข(๐‘ก) is continuous at ๐‘กโ‰ ๐‘ก๐‘˜, left continuous at ๐‘ก=๐‘ก๐‘˜, and ๐‘ข(๐‘ก+๐‘˜) exists, ๐‘˜=1,2,3,โ€ฆ} and BPC[๐ฝ,๐ธ]={๐‘ขโˆˆPC[๐ฝ,๐ธ]โˆถsup๐‘กโˆˆ๐ฝ||๐‘ข(๐‘ก)||<โˆž}. It is clear that BPC[๐ฝ,๐ธ] is a Banach space with norm โ€–๐‘ขโ€–๐ต=sup๐‘กโˆˆ๐ฝโ€–๐‘ข(๐‘ก)โ€–.(1.6) Let BPC[๐ฝ,๐‘ƒ]={๐‘ขโˆˆBPC[๐ฝ,๐ธ]โˆถ๐‘ข(๐‘ก)โ‰ฅ๐œƒ,โˆ€๐‘กโˆˆ๐ฝ} and ๐‘„={๐‘ขโˆˆBPC[๐ฝ,๐‘ƒ]โˆถ๐‘ข(๐‘ก)โ‰ฅ๐›ฝโˆ’1(1โˆ’๐›พ)๐‘ข(๐‘ ),โˆ€๐‘ก,๐‘ โˆˆ๐ฝ}. Obviously, BPC[๐ฝ,๐‘ƒ] and ๐‘„ are two cones in space BPC[๐ฝ,๐ธ] and ๐‘„โŠ‚BPC[๐ฝ,๐‘ƒ]. ๐‘ขโˆˆBPC[๐ฝ,๐‘ƒ]โˆฉ๐ถ1[๐ฝโ€ฒ,๐ธ] is called a positive solution of IBVP(1.5) if ๐‘ข(๐‘ก)>๐œƒ for ๐‘กโˆˆ๐ฝ and ๐‘ข(๐‘ก) satisfies (1.5).

2. Several Lemmas

Let us list some conditions.(๐ป1)sup๐‘กโˆˆ๐ฝโˆซ๐‘ก0๐พ(๐‘ก,๐‘ )๐‘‘๐‘ <โˆž,sup๐‘กโˆˆ๐ฝโˆซโˆž0๐ป(๐‘ก,๐‘ )๐‘‘๐‘ <โˆž, and lim๐‘ก๎…žโ†’๐‘ก๎€œโˆž0||๐ป๎€ท๐‘ก๎…ž๎€ธ||,๐‘ โˆ’๐ป(๐‘ก,๐‘ )๐‘‘๐‘ =0,โˆ€๐‘กโˆˆ๐ฝ.(2.1) In this case, let ๐‘˜โˆ—=sup๐‘กโˆˆ๐ฝ๎€œ๐‘ก0๐พ(๐‘ก,๐‘ )๐‘‘๐‘ ,โ„Žโˆ—=sup๐‘กโˆˆ๐ฝ๎€œโˆž0๐ป(๐‘ก,๐‘ )๐‘‘๐‘ .(2.2)(๐ป2)There exist ๐‘Žโˆˆ๐ถ[๐ฝ,๐‘…+] and ๐‘”โˆˆ๐ถ[๐‘…+ร—๐‘…+ร—๐‘…+,๐‘…+] such that ๐‘Žโ€–๐‘“(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ€–โ‰ค๐‘Ž(๐‘ก)๐‘”(โ€–๐‘ขโ€–,โ€–๐‘ฃโ€–,โ€–๐‘คโ€–),โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ,โˆ—=๎€œโˆž0๐‘Ž(๐‘ก)๐‘‘๐‘ก<โˆž.(2.3)(๐ป3)There exist ๐›พ๐‘˜โ‰ฅ0 (๐‘˜=1,2,3,โ€ฆ) and ๐นโˆˆ๐ถ[๐‘…+,๐‘…+] such that โ€–โ€–๐ผ๐‘˜โ€–โ€–(๐‘ข)โ‰ค๐›พ๐‘˜๐›พ๐น(โ€–๐‘ขโ€–),โˆ€๐‘ขโˆˆ๐‘ƒ(๐‘˜=1,2,3,โ€ฆ),โˆ—=โˆž๎“๐‘˜=1๐›พ๐‘˜<โˆž.(2.4)(๐ป4)For any ๐‘กโˆˆ๐ฝ and ๐‘Ÿ>0,๐‘“(๐‘ก,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ)={๐‘“(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โˆถ๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ๐‘Ÿ} and ๐ผ๐‘˜(๐‘ƒ๐‘Ÿ)={๐ผ๐‘˜(๐‘ข)โˆถ๐‘ขโˆˆ๐‘ƒ๐‘Ÿ} (๐‘˜=1,2,3,โ€ฆ) are relatively compact in ๐ธ, where ๐‘ƒ๐‘Ÿ={๐‘ขโˆˆ๐‘ƒโˆถ||๐‘ข||โ‰ค๐‘Ÿ}.

Remark 2.1. Obviously, condition (๐ป4) is satisfied automatically when ๐ธ is finite dimensional.

Remark 2.2. It is clear that if condition (๐ป1) is satisfied, then the operators ๐‘‡ and ๐‘† defined by (1.2) are bounded linear operators from BPC[๐ฝ,๐ธ] into BPC[๐ฝ,๐ธ] and ||๐‘‡||โ‰ค๐‘˜โˆ—,||๐‘†||โ‰คโ„Žโˆ—; moreover, we have ๐‘‡(BPC[๐ฝ,๐‘ƒ])โŠ‚BPC[๐ฝ,๐‘ƒ] and ๐‘†(BPC[๐ฝ,๐‘ƒ])โŠ‚BPC[๐ฝ,๐‘ƒ].

We shall reduce IBVP(1.5) to an impulsive integral equation. To this end, we consider the operator ๐ด defined by 1(๐ด๐‘ข)(๐‘ก)=๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚ร—๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ+๎€œ๎€ธ๎€ธ๐‘ก0๎“๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +0<๐‘ก๐‘˜<๐‘ก๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ,โˆ€๐‘กโˆˆ๐ฝ.(2.5) In what follows, we write ๐ฝ1=[0,๐‘ก1],๐ฝ๐‘˜=(๐‘ก๐‘˜โˆ’1,๐‘ก๐‘˜] (๐‘˜=2,3,4,โ€ฆ).

Lemma 2.3. If conditions (๐ป1)โ€“(๐ป4) are satisfied, then operator ๐ด defined by (2.5) is a completely continuous (i.e., continuous and compact) operator from ๐ต๐‘ƒ๐ถ[๐ฝ,๐‘ƒ] into ๐‘„.

Proof. Let ๐‘Ÿ>0 be given. Let ๐‘€๐‘Ÿ๎€ฝ๐‘”=max(๐‘ฅ,๐‘ฆ,๐‘ง)โˆถ0โ‰ค๐‘ฅโ‰ค๐‘Ÿ,0โ‰ค๐‘ฆโ‰ค๐‘˜โˆ—๐‘Ÿ,0โ‰ค๐‘งโ‰คโ„Žโˆ—๐‘Ÿ๎€พ๐‘,(2.6)๐‘Ÿ=max{๐น(๐‘ฅ)โˆถ0โ‰ค๐‘ฅโ‰ค๐‘Ÿ}.(2.7) For ๐‘ขโˆˆBPC[๐ฝ,๐‘ƒ],||๐‘ข||๐ตโ‰ค๐‘Ÿ, we see that by virtue of condition (๐ป2) and (2.6), โ€–๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก))โ€–โ‰ค๐‘€๐‘Ÿ๐‘Ž(๐‘ก),โˆ€๐‘กโˆˆ๐ฝ,(2.8) which implies the convergence of the infinite integral ๎€œโˆž0โ€–โ€–โ€–๎€œ๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก))๐‘‘๐‘ก,(2.9)โˆž0โ€–โ€–โ€–โ‰ค๎€œ๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก))๐‘‘๐‘กโˆž0โ€–๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก))โ€–๐‘‘๐‘กโ‰ค๐‘€๐‘Ÿ๐‘Žโˆ—.(2.10) On the other hand, condition (๐ป3) and (2.7) imply the convergence of the infinite series โˆž๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜,โ€–โ€–โ€–โ€–๎€ธ๎€ธ(2.11)โˆž๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–โ€–โ€–โ‰ค๎€ธ๎€ธโˆž๎“๐‘˜=1โ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–๎€ธ๎€ธโ‰ค๐‘๐‘Ÿ๐›พโˆ—.(2.12) It follows from (2.5), (2.10), and (2.12) that ||||||||โ‰ค1(๐ด๐‘ข)(๐‘ก)๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚โ€–ร—๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))โ€–๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0+โ€–๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))โ€–๐‘‘๐‘ โˆž๎“๐‘˜=๐‘šโ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–+๎€ธ๎€ธ(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1โ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–๎ƒฐ+๎€œ๎€ธ๎€ธ๐‘ก0๎“โ€–๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))โ€–๐‘‘๐‘ +0<๐‘ก๐‘˜<๐‘กโ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–โ‰ค1๎€ธ๎€ธ๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž0โ€–๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))โ€–๐‘‘๐‘ +โˆž๎“๐‘˜=1||||๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜||||๎ƒฐ+๎€œ๎€ธ๎€ธโˆž0โ€–๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))โ€–๐‘‘๐‘ +โˆž๎“๐‘˜=1||||๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜||||=๎€ธ๎€ธ๐›ฝ+๐›พ๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž0โ€–๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))โ€–๐‘‘๐‘ +โˆž๎“๐‘˜=1||||๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜||||๎ƒฐโ‰ค๎€ธ๎€ธ๐›ฝ+๐›พ๎€ท๐‘€๐›ฝ+๐›พโˆ’1๐‘Ÿ๐‘Žโˆ—+๐‘๐‘Ÿ๐›พโˆ—๎€ธ,โˆ€๐‘กโˆˆ๐ฝ,(2.13) which implies that ๐ด๐‘ขโˆˆBPC[๐ฝ,๐‘ƒ] and โ€–๐ด๐‘ขโ€–๐ตโ‰ค๐›ฝ+๐›พ๎€ท๐‘€๐›ฝ+๐›พโˆ’1๐‘Ÿ๐‘Žโˆ—+๐‘๐‘Ÿ๐›พโˆ—๎€ธ.(2.14) Moreover, by (2.5), we have 1(๐ด๐‘ข)(๐‘ก)โ‰ฅ๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚ร—๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ,๎€ธ๎€ธโˆ€๐‘กโˆˆ๐ฝ,(2.15)1(๐ด๐‘ข)(๐‘ก)โ‰ค๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚ร—๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0+๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜+๎€ธ๎€ธ(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ+๎€œ๎€ธ๎€ธโˆž0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ,โˆ€๐‘กโˆˆ๐ฝ.(2.16) It is clear that ๎€œโˆž0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ‰ค1๎€ธ๎€ธ๎ƒฏ๎€œ1โˆ’๐›พโˆž๐œ‚๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0+๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ,๎€ธ๎€ธ(2.17) so, (2.16) and (2.17) imply ๎‚ป1(๐ด๐‘ข)(๐‘ก)โ‰ค+1๐›ฝ+๐›พโˆ’1๎‚ผร—๎ƒฏ๎€œ1โˆ’๐›พโˆž๐œ‚๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0+๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜+๎€ธ๎€ธ(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ๎€ธ๎€ธ,โˆ€๐‘กโˆˆ๐ฝ.(2.18) It follows from (2.15) and (2.18) that 1(๐ด๐‘ข)(๐‘ก)โ‰ฅ๎‚ต1๐›ฝ+๐›พโˆ’1+1๐›ฝ+๐›พโˆ’1๎‚ถ1โˆ’๐›พโˆ’1(๐ด๐‘ข)(๐‘ )=๐›ฝโˆ’1(1โˆ’๐›พ)(๐ด๐‘ข)(๐‘ ),โˆ€๐‘ก,๐‘ โˆˆ๐ฝ.(2.19) Hence, ๐ด๐‘ขโˆˆ๐‘„. That is, ๐ด maps BPC[๐ฝ,๐‘ƒ] into ๐‘„.
Now, we are going to show that ๐ด is continuous. Let ๐‘ข๐‘›,๐‘ขโˆˆBPC[๐ฝ,๐‘ƒ],||๐‘ข๐‘›โˆ’๐‘ข||๐ตโ†’0 (๐‘›โ†’โˆž). Then ๐‘Ÿ=sup๐‘›||๐‘ข๐‘›||๐ต<โˆž and ||๐‘ข||๐ตโ‰ค๐‘Ÿ. Similar to (2.14), it is easy to get โ€–โ€–๐ด๐‘ข๐‘›โˆ’๐ด๐‘ขโ€–โ€–๐ตโ‰ค๐›ฝ+๐›พ๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž0โ€–โ€–๐‘“๎€ท๐‘ ,๐‘ข๐‘›๎€ท(๐‘ ),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ ),๐‘†๐‘ข๐‘›๎€ธ๎€ธ๎€ท(๐‘ )โˆ’๐‘“๐‘ ,๎€ท๐‘‡๐‘ข(๐‘ ),๐‘ข๎€ธ๎€ท๐‘†(๐‘ ),๐‘ข๎€ธ๎€ธโ€–โ€–+(๐‘ )๐‘‘๐‘ โˆž๎“๐‘˜=1โ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜๎€ธ๎€ธโˆ’๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–๎ƒฐ๎€ธ๎€ธ(๐‘›=1,2,3,โ€ฆ).(2.20) It is clear that ๐‘“๎€ท๐‘ก,๐‘ข๐‘›๎€ท(๐‘ก),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ก),๐‘†๐‘ข๐‘›๎€ธ๎€ธ๎€ท(๐‘ก)โŸถ๐‘“๐‘ก,๐‘ข๎€ท๐‘‡(๐‘ก),๐‘ข๎€ธ๎€ท๐‘†(๐‘ก),๐‘ข๎€ธ๎€ธ(๐‘ก)as๐‘›โŸถโˆž,โˆ€๐‘กโˆˆ๐ฝ.(2.21) Moreover, we see from (2.8) that โ€–โ€–๐‘“๎€ท๐‘ก,๐‘ข๐‘›๎€ท(๐‘ก),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ก),๐‘†๐‘ข๐‘›๎€ธ๎€ธ๎€ท(๐‘ก)โˆ’๐‘“๐‘ก,๐‘ข๎€ท๐‘‡(๐‘ก),๐‘ข๎€ธ๎€ท๐‘†(๐‘ก),๐‘ข๎€ธ๎€ธโ€–โ€–(๐‘ก)โ‰ค2๐‘€๐‘Ÿ๎€บ๐‘Ž(๐‘ก)=๐œŽ(๐‘ก),โˆ€๐‘กโˆˆ๐ฝ(๐‘›=1,2,3,โ€ฆ);๐œŽโˆˆ๐ฟ๐ฝ,๐‘…+๎€ป.(2.22) It follows from (2.21), (2.22) and the dominated convergence theorem that lim๐‘›โ†’โˆž๎€œโˆž0โ€–โ€–๐‘“๎€ท๐‘ก,๐‘ข๐‘›๎€ท(๐‘ก),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ก),๐‘†๐‘ข๐‘›๎€ธ๎€ธ๎€ท(๐‘ก)โˆ’๐‘“๐‘ก,๎€ท๐‘‡๐‘ข(๐‘ก),๐‘ข๎€ธ๎€ท๐‘†(๐‘ก),๐‘ข๎€ธ๎€ธโ€–โ€–(๐‘ก)๐‘‘๐‘ก=0.(2.23) On the other hand, for any ๐œ–>0, we can choose a positive integer ๐‘— such that ๐‘๐‘Ÿโˆž๎“๐‘˜=๐‘—+1๐›พ๐‘˜<๐œ–.(2.24) And then, choose a positive integer ๐‘›0 such that ๐‘—๎“๐‘˜=1โ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜๎€ธ๎€ธโˆ’๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–๎€ธ๎€ธ<๐œ–,โˆ€๐‘›>๐‘›0.(2.25) From (2.24) and (2.25), we get โˆž๎“๐‘˜=1โ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜๎€ธ๎€ธโˆ’๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–๎€ธ๎€ธ<๐œ–+2๐‘๐‘Ÿโˆž๎“๐‘˜=๐‘—+1๐›พ๐‘˜<3๐œ–,โˆ€๐‘›>๐‘›0,(2.26) hence limโˆž๐‘›โ†’โˆž๎“๐‘˜=1โ€–โ€–๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜๎€ธ๎€ธโˆ’๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–๎€ธ๎€ธ=0.(2.27) It follows from (2.20), (2.23), and (2.51) that ||๐ด๐‘ข๐‘›โˆ’๐ด๐‘ข||๐ตโ†’0as๐‘›โ†’โˆž, and the continuity of ๐ด is proved.
Finally, we prove that ๐ด is compact. Let ๐‘‰={๐‘ข๐‘›}โŠ‚BPC[๐ฝ,๐‘ƒ] be bounded and ||๐‘ข๐‘›||๐ตโ‰ค๐‘Ÿ (๐‘›=1,2,3,โ€ฆ). Consider ๐ฝ๐‘–=(๐‘ก๐‘–โˆ’1,๐‘ก๐‘–] for any fixed ๐‘–. By (2.5) and (2.8), we have โ€–โ€–๎€ท๐ด๐‘ข๐‘›๐‘ก๎€ธ๎€ท๎…ž๎€ธโˆ’๎€ท๐ด๐‘ข๐‘›๎€ธ(โ€–โ€–โ‰ค๎€œ๐‘ก)๐‘ก๐‘ก๎…žโ€–โ€–๐‘“๎€ท๐‘ ,๐‘ข๐‘›(๎€ท๐‘ ),๐‘‡๐‘ข๐‘›๎€ธ(๎€ท๐‘ ),๐‘†๐‘ข๐‘›๎€ธ(๎€ธโ€–โ€–๐‘ )๐‘‘๐‘ โ‰ค๐‘€๐‘Ÿ๎€œ๐‘กโ€ฒ๐‘ก๐‘Ž(๐‘ )๐‘‘๐‘ ,โˆ€๐‘ก,๐‘ก๎…žโˆˆ๐ฝ๐‘–,๐‘ก๎…ž>๐‘ก(๐‘›=1,2,3,โ€ฆ),(2.28) which implies that the functions {๐‘ค๐‘›(๐‘ก)} (๐‘›=1,2,3,โ€ฆ) defined by ๐‘ค๐‘›(โŽงโŽชโŽจโŽชโŽฉ๎€ท๐‘ก)=๐ด๐‘ข๐‘›๎€ธ(๐‘ก),โˆ€๐‘กโˆˆ๐ฝ๐‘–=๎€ท๐‘ก๐‘–โˆ’1,๐‘ก๐‘–๎€ป,๎€ท๐ด๐‘ข๐‘›๐‘ก๎€ธ๎€ท+๐‘–โˆ’1๎€ธ,โˆ€๐‘ก=๐‘ก๐‘–โˆ’1(๐‘›=1,2,3,โ€ฆ)(2.29) ((๐ด๐‘ข๐‘›)(๐‘ก+๐‘–โˆ’1) denotes the right limit of (๐ด๐‘ข๐‘›)(๐‘ก) at ๐‘ก=๐‘ก๐‘–โˆ’1) are equicontinuous on ๐ฝ๐‘–=[๐‘ก๐‘–โˆ’1,๐‘ก๐‘–]. On the other hand, for any ๐œ–>0, choose a sufficiently large ๐œ>๐œ‚ and a sufficiently large positive integer ๐‘—>๐‘š such that ๐‘€๐‘Ÿ๎€œโˆž๐œ๐‘Ž(๐‘ )๐‘‘๐‘ <๐œ–,๐‘๐‘Ÿโˆž๎“๐‘˜=๐‘—+1๐›พ๐‘˜<๐œ–.(2.30) We have, by (2.29), (2.5), (2.8), (2.30), and condition (๐ป3), ๐‘ค๐‘›=1(๐‘ก)๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1๐œ๐œ‚๐‘“๎€ท๐‘ ,๐‘ข๐‘›๎€ท(๐‘ ),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ ),๐‘†๐‘ข๐‘›๎€ธ๎€ธ+๎€œ(๐‘ )๐‘‘๐‘ โˆž๐œ๐‘“๎€ท๐‘ ,๐‘ข๐‘›๎€ท(๐‘ ),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ ),๐‘†๐‘ข๐‘›๎€ธ๎€ธร—๎€œ(๐‘ )๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0๐‘“๎€ท๐‘ ,๐‘ข๐‘›๎€ท(๐‘ ),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ ),๐‘†๐‘ข๐‘›๎€ธ๎€ธ(๐‘ )๐‘‘๐‘ +๐‘—๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜+๎€ธ๎€ธโˆž๎“๐‘˜=๐‘—+1๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜๎ƒฐ+๎€œ๎€ธ๎€ธ๐‘ก0๐‘“๎€ท๐‘ ,๐‘ข๐‘›๎€ท(๐‘ ),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ ),๐‘†๐‘ข๐‘›๎€ธ๎€ธ+(๐‘ )๐‘‘๐‘ ๐‘–โˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜๎€ธ๎€ธ,โˆ€๐‘กโˆˆ๐ฝ๐‘–(โ€–โ€–โ€–๎€œ๐‘›=1,2,3,โ€ฆ),(2.31)โˆž๐œ๐‘“๎€ท๐‘ ,๐‘ข๐‘›๎€ท(๐‘ ),๐‘‡๐‘ข๐‘›๎€ธ๎€ท(๐‘ ),๐‘†๐‘ข๐‘›๎€ธ๎€ธโ€–โ€–โ€–โ€–โ€–โ€–โ€–(๐‘ )๐‘‘๐‘ <๐œ–(๐‘›=1,2,3,โ€ฆ),(2.32)โˆž๎“๐‘˜=๐‘—+1๐ผ๐‘˜๎€ท๐‘ข๐‘›๎€ท๐‘ก๐‘˜โ€–โ€–โ€–โ€–๎€ธ๎€ธ<๐œ–(๐‘›=1,2,3,โ€ฆ).(2.33) It follows from (2.31), (2.32), (2.33), (2.8), and [4, Theorem 1.2.3] that 1๐›ผ(๐‘Š(๐‘ก))โ‰ค๎ƒฏ2๎€œ๐›ฝ+๐›พโˆ’1๐œ๐œ‚๎€œ๐›ผ(๐‘“(๐‘ ,๐‘‰(๐‘ ),(๐‘‡๐‘‰)(๐‘ ),(๐‘†๐‘‰)(๐‘ )))๐‘‘๐‘ +2๐œ–+2(1โˆ’๐›พ)๐œ‚0+๐›ผ(๐‘“(๐‘ ,๐‘‰(๐‘ ),(๐‘‡๐‘‰)(๐‘ ),(๐‘†๐‘‰)(๐‘ )))๐‘‘๐‘ ๐‘—๎“๐‘˜=๐‘š๐›ผ๎€ท๐ผ๐‘˜๎€ท๐‘‰๎€ท๐‘ก๐‘˜๎€ธ๎€ธ๎€ธ+2๐œ–+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐›ผ๎€ท๐ผ๐‘˜๎€ท๐‘‰๎€ท๐‘ก๐‘˜๎ƒฐ๎€œ๎€ธ๎€ธ๎€ธ+2๐‘ก0๐›ผ(๐‘“(๐‘ ,๐‘‰(๐‘ ),(๐‘‡๐‘‰)(๐‘ ),(๐‘†๐‘‰)(๐‘ )))๐‘‘๐‘ +๐‘–โˆ’1๎“๐‘˜=1๐›ผ๎€ท๐ผ๐‘˜๎€ท๐‘‰๎€ท๐‘ก๐‘˜๎€ธ๎€ธ๎€ธ,โˆ€๐‘กโˆˆ๐ฝ๐‘–,(2.34) where ๐‘Š(๐‘ก)={๐‘ค๐‘›(๐‘ก)โˆถ๐‘›=1,2,3,โ€ฆ}, ๐‘‰(๐‘ )={๐‘ข๐‘›(๐‘ )โˆถ๐‘›=1,2,3,โ€ฆ}, (๐‘‡๐‘‰)(๐‘ )={(๐‘‡๐‘ข๐‘›)(๐‘ )โˆถ๐‘›=1,2,3,โ€ฆ}, (๐‘†๐‘‰)(๐‘ )={(๐‘†๐‘ข๐‘›)(๐‘ )โˆถ๐‘›=1,2,3,โ€ฆ} and ๐›ผ(๐‘ˆ) denotes the Kuratowski measure of noncompactness of bounded set ๐‘ˆโŠ‚๐ธ (see [4, Section 1.2]). Since ๐‘‰(๐‘ ),(๐‘‡๐‘‰)(๐‘ ),(๐‘†๐‘‰)(๐‘ )โŠ‚๐‘ƒ๐‘Ÿโˆ— for ๐‘ โˆˆ๐ฝ, where ๐‘Ÿโˆ—=max{๐‘Ÿ,๐‘˜โˆ—๐‘Ÿ,โ„Žโˆ—๐‘Ÿ}, we see that, by condition (๐ป4), ๐›ผ๎€ท๐ผ๐›ผ(๐‘“(๐‘ ,๐‘‰(๐‘ ),(๐‘‡๐‘‰)(๐‘ ),(๐‘†๐‘‰)(๐‘ )))=0,โˆ€๐‘กโˆˆ๐ฝ,(2.35)๐‘˜๎€ท๐‘‰๎€ท๐‘ก๐‘˜๎€ธ๎€ธ๎€ธ=0(๐‘˜=1,2,3,โ€ฆ).(2.36) It follows from (2.34)โ€“(2.36) that ๐›ผ(๐‘Š(๐‘ก))โ‰ค4๐œ–๐›ฝ+๐›พโˆ’1,โˆ€๐‘กโˆˆ๐ฝ๐‘–,(2.37) which implies by virtue of the arbitrariness of ๐œ– that ๐›ผ(๐‘Š(๐‘ก))=0 for ๐‘กโˆˆ๐ฝ๐‘–.
By Ascoli-Arzela theorem (see [4, Theorem 1.2.5]), we conclude that ๐‘Š={๐‘ค๐‘›โˆถ๐‘›=1,2,3,โ€ฆ} is relatively compact in ๐ถ[๐ฝ๐‘–,๐ธ]; hence, {๐‘ค๐‘›(๐‘ก)} has a subsequence which is convergent uniformly on ๐ฝ๐‘–, so, {(๐ด๐‘ข๐‘›(๐‘ก)} has a subsequence which is convergent uniformly on ๐ฝ๐‘–. Since ๐‘– may be any positive integer, so, by diagonal method, we can choose a subsequence {(๐ด๐‘ข๐‘›๐‘–)(๐‘ก)} of {(๐ด๐‘ข๐‘›)(๐‘ก)} such that {(๐ด๐‘ข๐‘›๐‘–)(๐‘ก)} is convergent uniformly on each ๐ฝ๐‘˜ (๐‘˜=1,2,3,โ€ฆ). Let lim๐‘–โ†’โˆž๎€ท๐ด๐‘ข๐‘›๐‘–๎€ธ(๐‘ก)=๐‘ฃ(๐‘ก),โˆ€๐‘กโˆˆ๐ฝ.(2.38) It is clear that ๐‘ฃโˆˆPC[๐ฝ,๐‘ƒ]. By (2.14), we have โ€–โ€–๐ด๐‘ข๐‘›๐‘–โ€–โ€–๐ตโ‰ค๐›ฝ+๐›พ๎€ท๐‘€๐›ฝ+๐›พโˆ’1๐‘Ÿ๐‘Žโˆ—+๐‘๐‘Ÿ๐›พโˆ—๎€ธ,(๐‘–=1,2,3,โ€ฆ),(2.39) which implies that ๐‘ฃโˆˆBPC[๐ฝ,๐‘ƒ] and โ€–๐‘ฃโ€–๐ตโ‰ค๐›ฝ+๐›พ๎€ท๐‘€๐›ฝ+๐›พโˆ’1๐‘Ÿ๐‘Žโˆ—+๐‘๐‘Ÿ๐›พโˆ—๎€ธ.(2.40) Let ๐œ–>0 be arbitrarily given and choose a sufficiently large positive number ๐œ such that ๐‘€๐‘Ÿ๎€œโˆž๐œ๐‘Ž(๐‘ )๐‘‘๐‘ +๐‘๐‘Ÿ๎“๐‘ก๐‘˜โ‰ฅ๐œ๐›พ๐‘˜<๐œ–.(2.41) For any ๐œ<๐‘ก<โˆž, we have, by (2.5), ๎€ท๐ด๐‘ข๐‘›๐‘–๎€ธ(๎€ท๐‘ก)โˆ’๐ด๐‘ข๐‘›๐‘–๎€ธ(๎€œ๐œ)=๐‘ก๐œ๐‘“๎€ท๐‘ ,๐‘ข๐‘›๐‘–(๎€ท๐‘ ),๐‘‡๐‘ข๐‘›๐‘–๎€ธ(๎€ท๐‘ ),๐‘†๐‘ข๐‘›๐‘–๎€ธ(๎€ธ+๎“๐‘ )๐‘‘๐‘ ๐œโ‰ค๐‘ก๐‘˜<๐‘ก๐ผ๐‘˜๎€ท๐‘ข๐‘›๐‘–๎€ธ(๐‘ก),(๐‘–=1,2,3,โ€ฆ),(2.42) which implies by virtue of (2.8), condition (๐ป3) and (2.41) that โ€–โ€–๎€ท๐ด๐‘ข๐‘›๐‘–๎€ธ(๎€ท๐‘ก)โˆ’๐ด๐‘ข๐‘›๐‘–๎€ธ(โ€–โ€–๐œ)โ‰ค๐‘€๐‘Ÿ๎€œ๐‘ก๐œ๐‘Ž(๐‘ )๐‘‘๐‘ +๐‘๐‘Ÿ๎“๐œโ‰ค๐‘ก๐‘˜<๐‘ก๐›พ๐‘˜<๐œ–,(๐‘–=1,2,3,โ€ฆ).(2.43) Letting ๐‘–โ†’โˆž in (2.43), we get โ€–๐‘ฃ(๐‘ก)โˆ’๐‘ฃ(๐œ)โ€–โ‰ค๐œ–,โˆ€๐‘ก>๐œ.(2.44) On the other hand, since {(๐ด๐‘ข๐‘›๐‘–)(๐‘ก)} converges uniformly to ๐‘ฃ(๐‘ก) on [0,๐œ] as ๐‘–โ†’โˆž, there exists a positive integer ๐‘–0 such that โ€–โ€–๎€ท๐ด๐‘ข๐‘›๐‘–๎€ธโ€–โ€–[](๐‘ก)โˆ’๐‘ฃ(๐‘ก)<๐œ–,โˆ€๐‘กโˆˆ0,๐œ,๐‘–>๐‘–0.(2.45) It follows from (2.43)โ€“(2.45) that โ€–โ€–๎€ท๐ด๐‘ข๐‘›๐‘–๎€ธโ€–โ€–โ‰คโ€–โ€–๎€ท(๐‘ก)โˆ’๐‘ฃ(๐‘ก)๐ด๐‘ข๐‘›๐‘–๎€ธ๎€ท(๐‘ก)โˆ’๐ด๐‘ข๐‘›๐‘–๎€ธโ€–โ€–+โ€–โ€–๎€ท(๐œ)๐ด๐‘ข๐‘›๐‘–๎€ธโ€–โ€–โ€–(๐œ)โˆ’๐‘ฃ(๐œ)+โ€–๐‘ฃ(๐œ)โˆ’๐‘ฃ(๐‘ก)<3๐œ–,โˆ€๐‘ก>๐œ,๐‘–>๐‘–0.(2.46) By (2.45) and (2.46), we have โ€–โ€–๐ด๐‘ข๐‘›๐‘–โ€–โ€–โˆ’๐‘ฃ๐ตโ‰ค3๐œ–,โˆ€๐‘–>๐‘–0,(2.47) hence ||๐ด๐‘ข๐‘›๐‘–โˆ’๐‘ฃ||๐ตโ†’0 as ๐‘–โ†’โˆž, and the compactness of ๐ด is proved.

Lemma 2.4. Let conditions (๐ป1)โ€“(๐ป4) be satisfied. Then ๐‘ขโˆˆ๐ต๐‘ƒ๐ถ[๐ฝ,๐‘ƒ]โˆฉ๐ถ1[๐ฝโ€ฒ,๐ธ] is a solution of IBVP(1.5) if and only if ๐‘ขโˆˆ๐‘„ is a solution of the following impulsive integral equation: 1๐‘ข(๐‘ก)=๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚ร—๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ+๎€œ๎€ธ๎€ธ๐‘ก0๎“๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +0<๐‘ก๐‘˜<๐‘ก๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ,โˆ€๐‘กโˆˆ๐ฝ.(2.48) that is, ๐‘ข is a fixed point of operator ๐ด defined by (2.5) in ๐‘„.

Proof. For ๐‘ขโˆˆPC[๐ฝ,๐ธ]โˆฉ๐ถ1[๐ฝโ€ฒ,๐ธ], it is easy to get the following formula: ๎€œ๐‘ข(๐‘ก)=๐‘ข(0)+๐‘ก0๐‘ข๎…ž(๎“๐‘ )๐‘‘๐‘ +0<๐‘ก๐‘˜<๐‘ก๎€บ๐‘ข๎€ท๐‘ก+๐‘˜๎€ธ๎€ท๐‘กโˆ’๐‘ข๐‘˜๎€ธ๎€ป,โˆ€๐‘กโˆˆ๐ฝ.(2.49)
Let ๐‘ขโˆˆBPC[๐ฝ,๐‘ƒ]โˆฉ๐ถ1[๐ฝโ€ฒ,๐ธ] be a solution of IBVP(1.5). By (1.5) and (2.49), we have ๎€œ๐‘ข(๐‘ก)=๐‘ข(0)+๐‘ก0๎“๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +0<๐‘ก๐‘˜<๐‘ก๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ,โˆ€๐‘กโˆˆ๐ฝ.(2.50) We have shown in the proof of Lemma 2.3 that the infinite integral (2.9) and the infinite series (2.11) are convergent, so, by taking limits as ๐‘กโ†’โˆž in both sides of (2.50), we get ๎€œ๐‘ข(โˆž)=๐‘ข(0)+โˆž0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ.(2.51) On the other hand, by (1.5) and (2.50), we have ๎€œ๐‘ข(โˆž)=๐›พ๐‘ข(๐œ‚)+๐›ฝ๐‘ข(0),(2.52)๐‘ข(๐œ‚)=๐‘ข(0)+๐œ‚0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜.๎€ธ๎€ธ(2.53) It follows from (2.51)โ€“(2.53) that 1๐‘ข(0)=๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0+๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ,๎€ธ๎€ธ(2.54) and, substituting it into (2.50), we see that ๐‘ข(๐‘ก) satisfies (2.48), that is, ๐‘ข=๐ด๐‘ข. Since ๐ด๐‘ขโˆˆ๐‘„ by virtue of Lemma 2.3, we conclude that ๐‘ขโˆˆ๐‘„.
Conversely, assume that ๐‘ขโˆˆ๐‘„ is a solution of (2.48). We have, by (2.48), 1๐‘ข(0)=๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0+๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ,1๎€ธ๎€ธ(2.55)๐‘ข(๐œ‚)=๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚ร—๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ+๎€œ๎€ธ๎€ธ๐œ‚0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜.๎€ธ๎€ธ(2.56) Moreover, by taking limits as ๐‘กโ†’โˆž in (2.33), we see that ๐‘ข(โˆž) exists and 1๐‘ข(โˆž)=๎ƒฏ๎€œ๐›ฝ+๐›พโˆ’1โˆž๐œ‚๎€œ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +(1โˆ’๐›พ)๐œ‚0+๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ โˆž๎“๐‘˜=๐‘š๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+(1โˆ’๐›พ)๐‘šโˆ’1๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒฐ+๎€œ๎€ธ๎€ธโˆž0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜.๎€ธ๎€ธ(2.57) It follows from (2.55)โ€“(2.57) that ๐›พ๐‘ข(๐œ‚)+๐›ฝ๐‘ข(0)=๐‘ข(โˆž).(2.58) On the other hand, direct differentiation of (2.48) gives ๐‘ข๎…ž(๐‘ก)=๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก)),โˆ€๐‘กโˆˆ๐ฝโ€ฒ,(2.59) and, it is clear, by (2.48), ||ฮ”๐‘ข๐‘ก=๐‘ก๐‘˜=๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ(๐‘˜=1,2,3,โ€ฆ).(2.60) Hence, ๐‘ขโˆˆ๐ถ1[๐ฝโ€ฒ,๐ธ] and ๐‘ข(๐‘ก) satisfies (1.5).

Corollary 2.5. Let cone ๐‘ƒ be normal. If ๐‘ข is a fixed point of operator ๐ด defined by (1.5) in ๐‘„ and ||๐‘ข||๐ต>0, then ๐‘ข(๐‘ก)>๐œƒ for ๐‘กโˆˆ๐ฝ, so, ๐‘ข is a positive solution of IBVP(1.5).

Proof. For ๐‘ขโˆˆ๐‘„, we have ๐‘ข(๐‘ก)โ‰ฅ๐›ฝโˆ’1(1โˆ’๐›พ)๐‘ข(๐‘ )โ‰ฅ๐œƒ,โˆ€๐‘ก,๐‘ โˆˆ๐ฝ,(2.61) so, โ€–๐‘ข(๐‘ก)โ€–โ‰ฅ๐‘โˆ’1๐›ฝโˆ’1(1โˆ’๐›พ)โ€–๐‘ขโ€–๐ต,โˆ€๐‘กโˆˆ๐ฝ,(2.62) where ๐‘ denotes the normal constant of ๐‘ƒ. Since ||๐‘ข||๐ต>0, (2.61) and (2.62) imply that ๐‘ข(๐‘ก)>๐œƒ for ๐‘กโˆˆ๐ฝ.

Lemma 2.6 (Fixed point theorem of cone expansion and compression with norm type, see [3, Theoremโ€‰โ€‰3] or [1, Theoremโ€‰โ€‰2.3.4]). Let ๐‘ƒ be a cone in real Banach space ๐ธ and ฮฉ1,ฮฉ2 two bounded open sets in ๐ธ such that ๐œƒโˆˆฮฉ1, ฮฉ1โŠ‚ฮฉ2, where ๐œƒ denotes the zero element of ๐ธ and ฮฉ2 denotes the closure of ฮฉ2. Let operator ๐ดโˆถ๐‘ƒโˆฉ(ฮฉ2โงตฮฉ1)โ†’๐‘ƒ be completely continuous. Suppose that one of the following two conditions is satisfied: (a)โ€–๐ด๐‘ฅโ€–โ‰คโ€–๐‘ฅโ€–,โˆ€๐‘ฅโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ1;โ€–๐ด๐‘ฅโ€–โ‰ฅโ€–๐‘ฅโ€–,โˆ€๐‘ฅโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ2,(2.63) where ๐œ•ฮฉ๐‘– denotes the boundary of ฮฉ๐‘– (๐‘–=1,2).(b)โ€–๐ด๐‘ฅโ€–โ‰ฅโ€–๐‘ฅโ€–,โˆ€๐‘ฅโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ1,โ€–๐ด๐‘ฅโ€–โ‰คโ€–๐‘ฅโ€–,โˆ€๐‘ฅโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ2.(2.64)Then ๐ด has at least one fixed point in ๐‘ƒโˆฉ(ฮฉ2โงตฮฉ1).

3. Main Theorems

Let us list more conditions.(๐ป5) There exist ๐‘ข0โˆˆ๐‘ƒโงต{๐œƒ},๐‘โˆˆ๐ถ[๐ฝ,๐‘…+], and ๐œโˆˆ๐ถ[๐‘ƒ,๐‘…+] such that ๐‘“(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ฅ๐‘(๐‘ก)๐œ(๐‘ข)๐‘ข0,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ,๐œ(๐‘ข)๐‘โ€–๐‘ขโ€–โŸถโˆžas๐‘ขโˆˆ๐‘ƒ,โ€–๐‘ขโ€–โŸถโˆž,โˆ—=๎€œโˆž0๐‘(๐‘ก)๐‘‘๐‘ก<โˆž.(3.1)

Remark 3.1. Condition (๐ป5) means that ๐‘“(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค) is superlinear with respect to ๐‘ข.(๐ป6) There exist ๐‘ข1โˆˆ๐‘ƒโงต{๐œƒ},๐‘โˆˆ๐ถ[๐ฝ,๐‘…+], and ๐œŽโˆˆ๐ถ[๐‘ƒ,๐‘…+] such that ๐‘“(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ฅ๐‘(๐‘ก)๐œŽ(๐‘ข)๐‘ข1,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ,๐œŽ(๐‘ข)๐‘โ€–๐‘ขโ€–โŸถโˆžas๐‘ขโˆˆ๐‘ƒ,โ€–๐‘ขโ€–โŸถ0,โˆ—=๎€œโˆž0๐‘(๐‘ก)๐‘‘๐‘ก<โˆž.(3.2)

Theorem 3.2. Let cone ๐‘ƒ be normal and conditions (๐ป1)โ€“(๐ป6) satisfied. Assume that there exists a ๐œ‰>0 such that ๐‘(๐›ฝ+๐›พ)๎€ท๐‘€๐›ฝ+๐›พโˆ’1๐œ‰๐‘Žโˆ—+๐‘๐œ‰๐›พโˆ—๎€ธ<๐œ‰,(3.3) where ๐‘€๐œ‰๎€ฝ๐‘”=max(๐‘ฅ,๐‘ฆ,๐‘ง)โˆถ0โ‰ค๐‘ฅโ‰ค๐œ‰,0โ‰ค๐‘ฆโ‰ค๐‘˜โˆ—๐œ‰,0โ‰ค๐‘งโ‰คโ„Žโˆ—๐œ‰๎€พ,๐‘๐œ‰=max{๐น(๐‘ฅ)โˆถ0โ‰ค๐‘ฅโ‰ค๐œ‰}.(3.4) (for ๐‘”(๐‘ฅ,๐‘ฆ,๐‘ง),๐น(๐‘ฅ),๐‘Žโˆ— and ๐›พโˆ—, see conditions (๐ป2) and (๐ป3)). Then IBVP(1.5) has at least two positive solutions ๐‘ขโˆ—,๐‘ขโˆ—โˆ—โˆˆ๐‘„โˆฉ๐ถ1[๐ฝโ€ฒ,๐ธ] such that 0<||๐‘ขโˆ—||๐ต<๐œ‰<||๐‘ขโˆ—โˆ—||๐ต.

Proof. By Lemmas 2.3, 2.4, and Corollary 2.5, operator ๐ด defined by (2.5) is completely continuous from ๐‘„ into ๐‘„, and we need to prove that ๐ด has two fixed points ๐‘ขโˆ— and ๐‘ขโˆ—โˆ— in ๐‘„ such that 0<||๐‘ขโˆ—||๐ต<๐œ‰<||๐‘ขโˆ—โˆ—||๐ต.
By condition (๐ป5), there exists an ๐‘Ÿ1>0 such that ๐œ(๐‘ข)โ‰ฅ๐›ฝ(๐›ฝ+๐›พโˆ’1)๐‘2(1โˆ’๐›พ)2๐‘โˆ—โ€–โ€–๐‘ข0โ€–โ€–โ€–๐‘ขโ€–,โˆ€๐‘ขโˆˆ๐‘ƒ,โ€–๐‘ขโ€–โ‰ฅ๐‘Ÿ1,(3.5) where ๐‘ denotes the normal constant of ๐‘ƒ, so, ๐‘“(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ฅ๐›ฝ(๐›ฝ+๐›พโˆ’1)๐‘2โ€–๐‘ขโ€–(1โˆ’๐›พ)2๐‘โˆ—โ€–โ€–๐‘ข0โ€–โ€–๐‘(๐‘ก)๐‘ข0|||||,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ,๐‘ข|โ‰ฅ๐‘Ÿ1.(3.6) Choose ๐‘Ÿ2๎€ฝ>max๐‘๐›ฝ(1โˆ’๐›พ)โˆ’1๐‘Ÿ1๎€พ,๐œ‰.(3.7) For ๐‘ขโˆˆ๐‘„,||๐‘ข||๐ต=๐‘Ÿ2; we have by (2.62) and (3.7), โ€–๐‘ข(๐‘ก)โ€–โ‰ฅ๐‘โˆ’1๐›ฝโˆ’1(1โˆ’๐›พ)โ€–๐‘ขโ€–๐ต=๐‘โˆ’1๐›ฝโˆ’1(1โˆ’๐›พ)๐‘Ÿ2>๐‘Ÿ1,โˆ€๐‘กโˆˆ๐ฝ,(3.8) so, (2.5), (3.8), (3.6), and (2.62) imply (๐ด๐‘ข)(๐‘ก)โ‰ฅ1โˆ’๐›พ๎‚ต๎€œ๐›ฝ+๐›พโˆ’1โˆž0๎‚ถโ‰ฅ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ ๐›ฝ๐‘2(1โˆ’๐›พ)๐‘โˆ—โ€–โ€–๐‘ข0โ€–โ€–๎‚ต๎€œโˆž0๎‚ถ๐‘ขโ€–๐‘ข(๐‘ )โ€–๐‘(๐‘ )๐‘‘๐‘ 0โ‰ฅ๐‘โ€–๐‘ขโ€–๐ต๐‘โˆ—โ€–โ€–๐‘ข0โ€–โ€–๎‚ต๎€œโˆž0๎‚ถ๐‘ข๐‘(๐‘ )๐‘‘๐‘ 0=๐‘โ€–๐‘ขโ€–๐ตโ€–โ€–๐‘ข0โ€–โ€–๐‘ข0,โˆ€๐‘กโˆˆ๐ฝ,(3.9) and consequently, ||||||||๐ด๐‘ข๐ตโ‰ฅ|||||๐‘ข|๐ต||||,โˆ€๐‘ขโˆˆ๐‘„,|๐‘ข|๐ต=๐‘Ÿ2.(3.10) Similarly, by condition (๐ป6), there exists ๐‘Ÿ3>0 such that ๐œŽ(๐‘ข)โ‰ฅ๐›ฝ(๐›ฝ+๐›พโˆ’1)๐‘2(1โˆ’๐›พ)2๐‘โˆ—||||๐‘ข1|||||||||||||๐‘ข|,โˆ€๐‘ขโˆˆ๐‘ƒ,0<|๐‘ข|<๐‘Ÿ3,(3.11) so, ๐‘“(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ฅ๐›ฝ(๐›ฝ+๐›พโˆ’1)๐‘2|||||๐‘ข|(1โˆ’๐›พ)2๐‘โˆ—||||๐‘ข1||||๐‘(๐‘ก)๐‘ข1||||,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ,0<|๐‘ข|<๐‘Ÿ3.(3.12) Choose 0<๐‘Ÿ4๎€ฝ๐‘Ÿ<min3๎€พ,๐œ‰.(3.13) For ๐‘ขโˆˆ๐‘„,||๐‘ข||๐ต=๐‘Ÿ4, we have by (3.13) and (2.62), ๐‘Ÿ3>||||๐‘ข||||(๐‘ก)โ‰ฅ๐‘โˆ’1๐›ฝโˆ’1(1โˆ’๐›พ)โ€–๐‘ขโ€–๐ต=๐‘โˆ’1๐›ฝโˆ’1(1โˆ’๐›พ)๐‘Ÿ4>0,(3.14) so, similar to (3.9), we get by (2.5), (3.12), and (3.14) (๐ด๐‘ข)(๐‘ก)โ‰ฅ1โˆ’๐›พ๎‚ต๎€œ๐›ฝ+๐›พโˆ’1โˆž0๎‚ถโ‰ฅ๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ ๐›ฝ๐‘2(1โˆ’๐›พ)๐‘โˆ—||||๐‘ข1||||๎‚ต๎€œโˆž0||||||||๎‚ถ๐‘ข๐‘ข(๐‘ )๐‘(๐‘ )๐‘‘๐‘ 1โ‰ฅ๐‘โ€–๐‘ขโ€–๐ต๐‘โˆ—||||๐‘ข1||||๎‚ต๎€œโˆž0๐‘๎‚ถ๐‘ข(๐‘ )๐‘‘๐‘ 1=๐‘โ€–๐‘ขโ€–๐ต||||๐‘ข1||||๐‘ข1,โˆ€๐‘กโˆˆ๐ฝ;(3.15) hence โ€–๐ด๐‘ขโ€–๐ตโ‰ฅโ€–๐‘ขโ€–๐ต||||,โˆ€๐‘ขโˆˆ๐‘„,|๐‘ข|=๐‘Ÿ4.(3.16) On the other hand, for ๐‘ขโˆˆ๐‘„, ||๐‘ข||๐ต=๐œ‰, by condition (๐ป2), condition (๐ป3), (3.4), we have โ€–๐‘“(๐‘ก,๐‘ข(๐‘ก),(๐‘‡๐‘ข)(๐‘ก),(๐‘†๐‘ข)(๐‘ก))โ€–โ‰ค๐‘€๐œ‰โ€–โ€–๐ผ๐‘Ž(๐‘ก),โˆ€๐‘กโˆˆ๐ฝ,(3.17)๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜โ€–โ€–๎€ธ๎€ธโ‰ค๐‘๐œ‰๐›พ๐‘˜(๐‘˜=1,2,3,โ€ฆ).(3.18) It is clear that (๐ด๐‘ข)(๐‘ก)โ‰ค๐›ฝ+๐›พ๎ƒฉ๎€œ๐›ฝ+๐›พโˆ’1โˆž0๐‘“(๐‘ ,๐‘ข(๐‘ ),(๐‘‡๐‘ข)(๐‘ ),(๐‘†๐‘ข)(๐‘ ))๐‘‘๐‘ +โˆž๎“๐‘˜=1๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎ƒช๎€ธ๎€ธโˆ€๐‘กโˆˆ๐ฝ.(3.19) It follows from (3.17)โ€“(3.19) that โ€–๐ด๐‘ขโ€–๐ตโ‰ค๐‘(๐›ฝ+๐›พ)๎€ท๐‘€๐›ฝ+๐›พโˆ’1๐œ‰๐‘Žโˆ—+๐‘๐œ‰๐›พโˆ—๎€ธ.(3.20) Thus, (3.20) and (3.3) imply โ€–๐ด๐‘ขโ€–๐ต<โ€–๐‘ขโ€–๐ต,โˆ€๐‘ขโˆˆ๐‘„,โ€–๐‘ขโ€–๐ต=๐œ‰.(3.21) From (3.7) and (3.13), we know 0<๐‘Ÿ4<๐œ‰<๐‘Ÿ2; hence, (3.10), (3.16), (3.21), and Lemma 2.6 imply that ๐ด has two fixed points ๐‘ขโˆ—,๐‘ขโˆ—โˆ—โˆˆ๐‘„ such that ๐‘Ÿ4<||๐‘ขโˆ—||๐ต<๐œ‰<||๐‘ขโˆ—โˆ—||๐ต<๐‘Ÿ2. The proof is complete.

Theorem 3.3. Let cone ๐‘ƒ be normal and conditions (๐ป1)โ€“(๐ป5) satisfied. Assume that ๐‘”(๐‘ฅ,๐‘ฆ,๐‘ง)๐‘ฅ+๐‘ฆ+๐‘งโŸถ0as๐‘ฅ+๐‘ฆ+๐‘งโŸถ0+,๐น(๐‘ฅ)๐‘ฅโŸถ0as๐‘ฅโŸถ0+.(3.22) (for ๐‘”(๐‘ฅ,๐‘ฆ,๐‘ง) and ๐น(๐‘ฅ), see conditions (๐ป2) and (๐ป3)). Then IBVP(1.5) has at least one positive solution ๐‘ขโˆ—โˆˆ๐‘„โˆฉ๐ถ1[๐ฝโ€ฒ,๐ธ].

Proof. As in the proof of Theorem 3.2, we can choose ๐‘Ÿ2>0 such that (3.10) holds (in this case, we only choose ๐‘Ÿ2>๐‘๐›ฝ(1โˆ’๐›พ)โˆ’1๐‘Ÿ1 instead of (3.7)). On the other hand, by (3.22), there exists ๐‘Ÿ5>0 such that ๐‘”(๐‘ฅ,๐‘ฆ,๐‘ง)โ‰ค๐œ–0(๐‘ฅ+๐‘ฆ+๐‘ง),โˆ€0<๐‘ฅ+๐‘ฆ+๐‘ง<๐‘Ÿ5,๐น(๐‘ฅ)โ‰ค๐œ–0๐‘ฅ,โˆ€0<๐‘ฅ<๐‘Ÿ5,(3.23) where ๐œ–0=๐›ฝ+๐›พโˆ’1๐‘(๐›ฝ+๐›พ)๎€บ๎€ท1+๐‘˜โˆ—+โ„Žโˆ—๎€ธ๐‘Žโˆ—+๐›พโˆ—๎€ป.(3.24) Choose 0<๐‘Ÿ6๎‚†๐‘Ÿ<min51+๐‘˜โˆ—+โ„Žโˆ—,๐‘Ÿ2๎‚‡.(3.25) For ๐‘ขโˆˆ๐‘„,||๐‘ข||๐ต=๐‘Ÿ6, we have by (2.62) and (3.25), 0<๐‘โˆ’1๐›ฝโˆ’1(1โˆ’๐›พ)๐‘Ÿ6โ‰ค||||๐‘ข||||(๐‘ก)โ‰ค๐‘Ÿ6<๐‘Ÿ5,โˆ€๐‘กโˆˆ๐ฝ,0<๐‘โˆ’1๐›ฝโˆ’1(1โˆ’๐›พ)๐‘Ÿ6โ‰ค||||||||+||||||||+||||||||โ‰ค๎€ท๐‘ข(๐‘ก)(๐‘‡๐‘ข)(๐‘ก)(๐‘†๐‘ข)(๐‘ก)1+๐‘˜โˆ—+โ„Žโˆ—๎€ธ๐‘Ÿ6<๐‘Ÿ5,โˆ€๐‘กโˆˆ๐ฝ,(3.26) so, (3.23) imply ๐‘”๎€ท||||๐‘ข||||,||||||||,||||||||๎€ธ(๐‘ก)(๐‘‡๐‘ข)(๐‘ก)(๐‘†๐‘ข)(๐‘ก)โ‰ค๐œ–0๎€ท||||๐‘ข||||+||||||||+||||||||๎€ธ(๐‘ก)(๐‘‡๐‘ข)(๐‘ก)(๐‘†๐‘ข)(๐‘ก)โ‰ค๐œ–0๎€ท1+๐‘˜โˆ—+โ„Žโˆ—๎€ธ๐‘Ÿ6๐น๎€ท||||๐‘ข๎€ท๐‘ก,โˆ€๐‘กโˆˆ๐ฝ,๐‘˜๎€ธ||||๎€ธโ‰ค๐œ–0||||๐‘ข๎€ท๐‘ก๐‘˜๎€ธ||||โ‰ค๐œ–0๐‘Ÿ6,(๐‘˜=1,2,3,โ€ฆ).(3.27) It follows from (3.19), condition (๐ป2), condition (๐ป3), (3.27), and (3.24) that ||||||||โ‰ค(๐ด๐‘ข)(๐‘ก)๐‘(๐›ฝ+๐›พ)๎ƒฏ๐œ–๐›ฝ+๐›พโˆ’10๎€ท1+๐‘˜โˆ—+โ„Žโˆ—๎€ธ๐‘Ÿ6๎€œโˆž0๐‘Ž(๐‘ )๐‘‘๐‘ +๐œ–0๐‘Ÿ6โˆž๎“๐‘˜=1๐›พ๐‘˜๎ƒฐ=๐‘(๐›ฝ+๐›พ)๐œ–0๐‘Ÿ6๐›ฝ+๐›พโˆ’1๎€ฝ๎€ท1+๐‘˜โˆ—+โ„Žโˆ—๎€ธ๐‘Žโˆ—+๐›พโˆ—๎€พ=๐‘Ÿ6,โˆ€๐‘กโˆˆ๐ฝ,(3.28) and consequently, โ€–๐ด๐‘ขโ€–๐ตโ‰คโ€–๐‘ขโ€–๐ต,โˆ€๐‘ขโˆˆ๐‘„,โ€–๐‘ขโ€–๐ต=๐‘Ÿ6.(3.29) Since 0<๐‘Ÿ6<๐‘Ÿ2 by virtue of (3.25), we conclude from (3.10), (3.29), and Lemma 2.6 that ๐ด has a fixed point ๐‘ขโˆ—โˆˆ๐‘„ such that ๐‘Ÿ6โ‰ค||๐‘ขโˆ—||๐ตโ‰ค๐‘Ÿ2. The theorem is proved.

Example 3.4. Consider the infinite system of scalar first-order impulsive integrodifferential equations of mixed type on the half line: ๐‘ข๎…ž๐‘›1(๐‘ก)=8๐‘›2๐‘’โˆ’5๐‘กโŽ›โŽœโŽœโŽ๎ƒฌ๐‘ข๐‘›+1(๐‘ก)+โˆž๎“๐‘š=1๐‘ข๐‘š๎ƒญ(๐‘ก)2+๎„ถ๎„ต๎„ตโŽท3๐‘ข2๐‘›(๐‘ก)+โˆž๎“๐‘š=1๐‘ข๐‘šโŽžโŽŸโŽŸโŽ +1(๐‘ก)9๐‘›3๐‘’โˆ’6๐‘ก๎ƒฏ๎‚ต๎€œ๐‘ก0๐‘’โˆ’(๐‘ก+1)๐‘ ๐‘ข๐‘›๎‚ถ(๐‘ )๐‘‘๐‘ 2+๎‚ต๎€œโˆž0๐‘ข๐‘›+2(๐‘ )๐‘‘๐‘ (1+๐‘ก+๐‘ )2๎‚ถ3๎ƒฐ,โˆ€0โ‰ค๐‘ก<โˆž,๐‘กโ‰ ๐‘˜(๐‘˜=1,2,3,โ€ฆ;๐‘›=1,2,3,โ€ฆ),ฮ”๐‘ข๐‘›||๐‘ก=๐‘˜=16๐‘›23โˆ’๐‘˜๎‚€๎€บ๐‘ข๐‘›๎€ป(๐‘˜)2+๎€บ๐‘ข๐‘›+2๎€ป(๐‘˜)2๎‚1,(๐‘˜=1,2,3,โ€ฆ;๐‘›=1,2,3,โ€ฆ),๐‘ข(โˆž)=2๐‘ข๐‘›๎‚€92๎‚+6๐‘ข๐‘›(0),(๐‘›=1,2,3,โ€ฆ).(3.30) Evidently, ๐‘ข๐‘›(๐‘ก)โ‰ก0(๐‘›=1,2,3,โ€ฆ) is the trivial solution of infinite system (3.30).

Conclusion. Infinite system (3.30) has at least two positive solutions {๐‘ขโˆ—๐‘›(๐‘ก)} (๐‘›=1,2,3,โ€ฆ) and {๐‘ข๐‘›โˆ—โˆ—(๐‘ก)} (๐‘›=1,2,3,โ€ฆ) such that 0<infโˆž0โ‰ค๐‘ก<โˆž๎“๐‘›=1๐‘ขโˆ—๐‘›(๐‘ก)โ‰คsupโˆž0โ‰ค๐‘ก<โˆž๎“๐‘›=1๐‘ขโˆ—๐‘›(๐‘ก)<1<supโˆž0โ‰ค๐‘ก<โˆž๎“๐‘›=1๐‘ข๐‘›โˆ—โˆ—(๐‘ก),infโˆž0โ‰ค๐‘ก<โˆž๎“๐‘›=1๐‘ข๐‘›โˆ—โˆ—(๐‘ก)>0.(3.31)

Proof. Let ๐ธ=๐‘™1={๐‘ข=(๐‘ข1,โ€ฆ,๐‘ข๐‘›โˆ‘,โ€ฆ)โˆถ๐‘›=1โˆž|๐‘ข๐‘›|<โˆž} with norm โˆ‘||๐‘ข||=โˆž๐‘›=1|๐‘ข๐‘›| and ๐‘ƒ=(๐‘ข1,โ€ฆ,๐‘ข๐‘›,โ€ฆ)โˆถ๐‘ข๐‘›โ‰ฅ0,๐‘›=1,2,3,โ€ฆ}. Then ๐‘ƒ is a normal cone in ๐ธ with normal constant ๐‘=1, and infinite system (3.30) can be regarded as an infinite three-point boundary value problem of form (1.5). In this situation, ๐‘ข=(๐‘ข1,โ€ฆ,๐‘ข๐‘›,โ€ฆ), ๐‘ฃ=(๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›,โ€ฆ), ๐‘ค=(๐‘ค1,โ€ฆ,๐‘ค๐‘›,โ€ฆ), ๐‘ก๐‘˜=๐‘˜(๐‘˜=1,2,3,โ€ฆ), ๐พ(๐‘ก,๐‘ )=๐‘’โˆ’(๐‘ก+1)๐‘ , ๐ป(๐‘ก,๐‘ )=(1+๐‘ก+๐‘ )โˆ’2, ๐œ‚=9/2, ๐›พ=1/2, ๐›ฝ=6, ๐‘“=(๐‘“1,โ€ฆ,๐‘“๐‘›,โ€ฆ), and ๐ผ๐‘˜=(๐ผ๐‘˜1,โ€ฆ,๐ผ๐‘˜๐‘›โ€ฆ), in which ๐‘“๐‘›1(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)=8๐‘›2๐‘’โˆ’5๐‘กโŽ›โŽœโŽœโŽ๎ƒฌ๐‘ข๐‘›+1+โˆž๎“๐‘š=1๐‘ข๐‘š๎ƒญ2+๎„ถ๎„ต๎„ตโŽท3๐‘ข2๐‘›+โˆž๎“๐‘š=1๐‘ข๐‘šโŽžโŽŸโŽŸโŽ +19๐‘›3๐‘’โˆ’6๐‘ก๎€ท๐‘ฃ2๐‘›+๐‘ค3๐‘›+2๎€ธ,[๐ผโˆ€๐‘กโˆˆ๐ฝ=0,โˆž),๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ(๐‘›=1,2,3,โ€ฆ),(3.32)๐‘˜๐‘›(1๐‘ข)=6๐‘›23โˆ’๐‘˜๎€ท๐‘ข2๐‘›+๐‘ข22๐‘›+1๎€ธ,โˆ€๐‘ขโˆˆ๐‘ƒ(๐‘˜=1,2,3,โ€ฆ;๐‘›=1,2,3,โ€ฆ).(3.33) It is easy to see that ๐‘“โˆˆ๐ถ[๐ฝร—๐‘ƒร—๐‘ƒร—๐‘ƒ,๐‘ƒ], ๐ผ๐‘˜โˆˆ๐ถ[๐‘ƒ,๐‘ƒ] (๐‘˜=1,2,3,โ€ฆ), and condition (๐ป1) is satisfied and ๐‘˜โˆ—โ‰ค1,โ„Žโˆ—โ‰ค1. We have, by (3.32), 0โ‰ค๐‘“๐‘›โ‰ค1(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)8๐‘›2๐‘’โˆ’5๐‘ก๎‚ต๎€บ2||||๎€ป|๐‘ข|2+๎”4||||๎‚ถ+1|๐‘ข|9๐‘›3๐‘’โˆ’6๐‘ก๎€ทโ€–๐‘ฃโ€–2+โ€–๐‘คโ€–3๎€ธโ‰ค1๐‘›2๐‘’โˆ’5๐‘ก๎‚ต12โ€–๐‘ขโ€–2+14๎”||||+1|๐‘ข|9โ€–๐‘ฃโ€–2+19โ€–๐‘คโ€–3๎‚ถ,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ(๐‘›=1,2,3,โ€ฆ),(3.34) so, observing the inequality โˆ‘โˆž๐‘›=1(1/๐‘›2)<2, we get (โ€–๐‘“๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ€–=โˆž๎“๐‘›=1๐‘“๐‘›(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ค๐‘’โˆ’5๐‘ก๎‚€โ€–๐‘ขโ€–2+12โˆš2โ€–๐‘ขโ€–+9โ€–๐‘ฃโ€–2+29โ€–๐‘คโ€–3๎‚,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ,(3.35) which implies that condition (๐ป2) is satisfied for ๐‘Ž(๐‘ก)=๐‘’โˆ’5๐‘ก(โˆ—=1/5) and ๐‘”(๐‘ฅ,๐‘ฆ,๐‘ง)=๐‘ฅ2+12โˆš2๐‘ฅ+9๐‘ฆ2+29๐‘ง3.(3.36) By (3.33), we have 0โ‰ค๐ผ๐‘˜๐‘›1(๐‘ข)โ‰ค6๐‘›23โˆ’๐‘˜โ€–๐‘ขโ€–2,โˆ€๐‘ขโˆˆ๐‘ƒ(๐‘˜=1,2,3,โ€ฆ;๐‘›=1,2,3,โ€ฆ),(3.37) so, condition (๐ป3) is satisfied for ๐›พ๐‘˜=3โˆ’๐‘˜โˆ’1(๐›พโˆ—=1/6) and ๐น(๐‘ฅ)=๐‘ฅ2.(3.38) On the other hand, (3.32) implies ๐‘“๐‘›1(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ฅ8๐‘›2๐‘’โˆ’5๐‘กโ€–๐‘ขโ€–2๐‘“,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ(๐‘›=1,2,3,โ€ฆ),๐‘›1(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ฅ8๐‘›2๐‘’โˆ’5๐‘กโˆšโ€–๐‘ขโ€–,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ(๐‘›=1,2,3,โ€ฆ),(3.39) so, we see that condition (๐ป5) is satisfied for ๐‘(๐‘ก)=(1/8)๐‘’โˆ’5๐‘ก(๐‘โˆ—=1/40), ๐œ(๐‘ข)=||๐‘ข||2 and ๐‘ข0=(1,โ€ฆ,1/๐‘›2,โ€ฆ), and condition (๐ป6) is satisfied for ๐‘(๐‘ก)=(1/8)๐‘’โˆ’5๐‘ก(๐‘โˆ—=1/40), โˆš๐œŽ(๐‘ข)=||๐‘ข||, and let ๐‘ข1=(1,โ€ฆ,1/๐‘›2,โ€ฆ). Now, we check that condition (๐ป4) is satisfied. Let ๐‘กโˆˆ๐ฝ and ๐‘Ÿ>0 be fixed, and {๐‘ง(๐‘š)} be any sequence in ๐‘“(๐‘ก,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ), where ๐‘ง(๐‘š)=(๐‘ง1(๐‘š),โ€ฆ,๐‘ง๐‘›(๐‘š),โ€ฆ). Then, we have, by (3.34), 0โ‰ค๐‘ง๐‘›(๐‘š)โ‰ค1๐‘›2๎‚€11๐‘Ÿ182+14โˆš1๐‘Ÿ+9๐‘Ÿ3๎‚,(๐‘›,๐‘š=1,2,3,โ€ฆ).(3.40) So, {๐‘ง๐‘›(๐‘š)} is bounded, and, by diagonal method, we can choose a subsequence {๐‘š๐‘–}โŠ‚{๐‘š} such that ๐‘ง(๐‘š๐‘–)โŸถ๐‘ง๐‘›as๐‘–โŸถโˆž(๐‘›=1,2,3,โ€ฆ),(3.41) which implies by virtue of (3.40) that 0โ‰ค๐‘ง๐‘›โ‰ค1๐‘›2๎‚€11๐‘Ÿ182+14โˆš1๐‘Ÿ+9๐‘Ÿ3๎‚,(๐‘›=1,2,3,โ€ฆ).(3.42) Consequently, ๐‘ง=(๐‘ง1,โ€ฆ,๐‘ง๐‘›,โ€ฆ)โˆˆ๐‘™1=๐ธ. Let ๐œ–>0 be given. Choose a positive integer ๐‘›0 such that โŽ›โŽœโŽœโŽโˆž๎“๐‘›=๐‘›0+11๐‘›2โŽžโŽŸโŽŸโŽ ๎‚€11๐‘Ÿ182+14โˆš1๐‘Ÿ+9๐‘Ÿ3๎‚<๐œ–3.(3.43) By (3.41), we see that there exists a positive integer ๐‘–0 such that |||๐‘ง(๐‘š๐‘–)๐‘›โˆ’๐‘ง๐‘›|||<๐œ–3๐‘›0,โˆ€๐‘–>๐‘–0๎€ท๐‘›=1,2,โ€ฆ,๐‘›0๎€ธ.(3.44) It follows from (3.40)โ€“(3.44) that โ€–โ€–๐‘ง(๐‘š๐‘–)โˆ’๐‘งโ€–โ€–=โˆž๎“๐‘›=1|||๐‘ง(๐‘š๐‘–)๐‘›โˆ’๐‘ง๐‘›|||โ‰ค๐‘›0๎“๐‘›=1|||๐‘ง(๐‘š๐‘–)๐‘›โˆ’๐‘ง๐‘›|||+โˆž๎“๐‘›=๐‘›0+1|||๐‘ง(๐‘š๐‘–)๐‘›|||+โˆž๎“๐‘›=๐‘›0+1||๐‘ง๐‘›||<๐œ–3+๐œ–3+๐œ–3=๐œ–,โˆ€๐‘–>๐‘–0.(3.45) Thus, we have proved that ๐‘“(๐‘ก,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ) is relatively compact in ๐ธ. Similarly, by using (3.37), we can prove that ๐ผ๐‘˜(๐‘ƒ๐‘Ÿ) is relatively compact in ๐ธ. Hence, condition (๐ป4) is satisfied. Finally, it is easy to check that inequality (3.3) is satisfied for ๐œ‰=1 (in this case, ๐‘€๐œ‰โ‰ค17/36 and ๐‘๐œ‰=1). Hence, our conclusion follows from Theorem 3.2.

Example 3.5. Consider the infinite system of scalar first-order impulsive integrodifferential equations of mixed type on the half line: ๐‘ข๎…ž๐‘›1(๐‘ก)=๐‘›3(1+๐‘ก)3๎ƒฉ๐‘ข๐‘›(๐‘ก)+2๐‘ข๐‘›+1(๐‘ก)+โˆž๎“๐‘š=1๐‘ข๐‘š๎ƒช(๐‘ก)3+1๐‘›4(1+๐‘ก)4๎‚ต๎€œ๐‘ก0๐‘ข2๐‘›(๐‘ )๐‘‘๐‘ 1+๐‘ก๐‘ +๐‘ 2๎‚ถ4+1๐‘›5(1+๐‘ก)5๎‚ต๎€œโˆž0๐‘’โˆ’๐‘ sin2(๐‘กโˆ’๐‘ )๐‘ข3๐‘›(๎‚ถ๐‘ )๐‘‘๐‘ 5,โˆ€0โ‰ค๐‘ก<โˆž,๐‘กโ‰ 2๐‘˜(๐‘˜=1,2,3,โ€ฆ;๐‘›=1,2,3,โ€ฆ),ฮ”๐‘ข๐‘›โˆฃ๐‘ก=2๐‘˜=1๐‘›2๐‘’โˆ’๐‘˜๎€บ๐‘ข๐‘›๎€ป(2๐‘˜)3+1๐‘›32โˆ’๐‘˜๎€บ๐‘ข2๐‘›+1๎€ป(2๐‘˜)4,(๐‘˜=1,2,3,โ€ฆ;๐‘›=1,2,3,โ€ฆ),4๐‘ข๐‘›(โˆž)=3๐‘ข๐‘›(7)+2๐‘ข๐‘›(0),(๐‘›=1,2,3,โ€ฆ).(3.46) Evidently, ๐‘ข๐‘›(๐‘ก)โ‰ก0(๐‘›=1,2,3,โ€ฆ) is the trivial solution of infinite system (3.46).

Conclusion. Infinite system (3.46) has at least one positive solution {๐‘ขโˆ—๐‘›(๐‘ก)} (๐‘›=1,2,3,โ€ฆ) such that infโˆž0โ‰ค๐‘ก<โˆž๎“๐‘›=1๐‘ขโˆ—๐‘›(๐‘ก)>0.(3.47)

Proof. Let ๐ธ=๐‘™1=({๐‘ข=(๐‘ข1,โ€ฆ,๐‘ข๐‘›โˆ‘,โ€ฆ)โˆถโˆž๐‘›=1|๐‘ข๐‘›|<โˆž} with norm โˆ‘||๐‘ข||=โˆž๐‘›=1|๐‘ข๐‘›| and ๐‘ƒ={๐‘ข=(๐‘ข1,โ€ฆ,๐‘ข๐‘›,โ€ฆ)โˆˆ๐‘™1โˆถ๐‘ข๐‘›โ‰ฅ0,๐‘›=1,2,3,โ€ฆ}. Then ๐‘ƒ is a normal cone in ๐ธ with normal constant ๐‘=1, and infinite system (3.46) can be regarded as an infinite three-point boundary value problem of form (1.5) in ๐ธ. In this situation, ๐‘ข=(๐‘ข1,โ€ฆ,๐‘ข๐‘›,โ€ฆ), ๐‘ฃ=(๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›,โ€ฆ), ๐‘ค=(๐‘ค1,โ€ฆ,๐‘ค๐‘›,โ€ฆ), ๐‘ก๐‘˜=2๐‘˜ (๐‘˜=1,2,3,โ€ฆ), ๐พ(๐‘ก,๐‘ )=(1+๐‘ก๐‘ +๐‘ 2)โˆ’1, ๐ป(๐‘ก,๐‘ )=๐‘’โˆ’๐‘ sin2(๐‘กโˆ’๐‘ ), ๐œ‚=7, ๐›พ=3/4, ๐›ฝ=1/2, ๐‘“=(๐‘“1,โ€ฆ,๐‘“๐‘›,โ€ฆ), and ๐ผ๐‘˜=(๐ผ๐‘˜1,โ€ฆ,๐ผ๐‘˜๐‘›,โ€ฆ), in which ๐‘“๐‘›1(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)=๐‘›3(1+๐‘ก)โˆ’3๎ƒฉ๐‘ข๐‘›+2๐‘ข๐‘›+1+โˆž๎“๐‘š=1๐‘ข๐‘š๎ƒช3+1๐‘›4(1+๐‘ก)โˆ’4๐‘ฃ42๐‘›+1๐‘›5(1+๐‘ก)โˆ’5๐‘ค53๐‘›,[๐ผโˆ€๐‘กโˆˆ๐ฝ=0,โˆž),๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ(๐‘›=1,2,3,โ€ฆ),๐‘˜๐‘›1(๐‘ข)=๐‘›2๐‘’โˆ’๐‘˜๐‘ข3๐‘›+1๐‘›32โˆ’๐‘˜๐‘ข42๐‘›+1,(๐‘˜=1,2,3,โ€ฆ;๐‘›=1,2,3,โ€ฆ).(3.48) It is clear that ๐‘“โˆˆ๐ถ[๐ฝร—๐‘ƒร—๐‘ƒร—๐‘ƒ,๐‘ƒ],๐ผ๐‘˜โˆˆ๐ถ[๐‘ƒ,๐‘ƒ] (๐‘˜=1,2,3,โ€ฆ), and condition (๐ป1) is satisfied and ๐‘˜โˆ—โ‰ค๐œ‹/2,โ„Žโˆ—โ‰ค1. We have 0โ‰ค๐‘“๐‘›1(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ค๐‘›3(1+๐‘ก)โˆ’3๎€ท)(3โ€–๐‘ขโ€–3+โ€–๐‘ฃโ€–4+โ€–๐‘คโ€–5๎€ธ,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ(๐‘›=1,2,3,โ€ฆ),0โ‰ค๐ผ๐‘˜๐‘›1(๐‘ข)โ‰ค๐‘›22โˆ’๐‘˜๎€ทโ€–๐‘ขโ€–3+โ€–๐‘ขโ€–4๎€ธ,โˆ€๐‘ขโˆˆ๐‘ƒ(๐‘˜=1,2,3,โ€ฆ,๐‘›=1,2,3,โ€ฆ),(3.49) so, condition (๐ป2) is satisfied for ๐‘Ž(๐‘ก)=(1+๐‘ก)โˆ’3(๐‘Žโˆ—=(1/2)) and ๐‘”(๐‘ฅ,๐‘ฆ,๐‘ง)=54๐‘ฅ3+2๐‘ฆ4+2๐‘ง5,(3.50) and (๐ป3) is satisfied for ๐›พ๐‘˜=2โˆ’๐‘˜(๐›พโˆ—=1) and ๐น(๐‘ฅ)=2๐‘ฅ3+2๐‘ฅ4.(3.51) From ๐‘“๐‘›1(๐‘ก,๐‘ข,๐‘ฃ,๐‘ค)โ‰ฅ๐‘›3(1+๐‘ก)โˆ’3โ€–๐‘ขโ€–3,โˆ€๐‘กโˆˆ๐ฝ,๐‘ข,๐‘ฃ,๐‘คโˆˆ๐‘ƒ(๐‘›=1,2,3,โ€ฆ),(3.52) we see that condition (๐ป5) is satisfied for ๐‘(๐‘ก)=(1+๐‘ก)โˆ’3(๐‘โˆ—=1/2),๐œ(๐‘ข)=||๐‘ข||3, and ๐‘ข0=(1,โ€ฆ,1/๐‘›3,โ€ฆ). Moreover, it is clear that (3.22) are satisfied. Similar to the discussion in Example 3.4, we can prove that ๐‘“(๐‘ก,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ,๐‘ƒ๐‘Ÿ) and ๐ผ๐‘˜(๐‘ƒ๐‘Ÿ) (for fixed ๐‘กโˆˆ๐ฝ and ๐‘Ÿ>0;๐‘˜=1,2,3,โ€ฆ) are relatively compact in ๐ธ=๐‘™1; so, condition (๐ป4) is satisfied. Hence, our conclusion follows from Theorem 3.3.

Acknowledgment

This paper is supported by the National Nature Science Foundation of China (no. 10671167).