About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2011 (2011), Article ID 852919, 9 pages
http://dx.doi.org/10.1155/2011/852919
Research Article

Solutions of the Force-Free Duffing-van der Pol Oscillator Equation

1Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
2Abdul Salam School of Mathematical Sciences, GC University, Lahore, Pakistan
3Department of Mathematics, NED University of Engineering and Technology, Karachi 75270, Pakistan

Received 31 May 2011; Revised 5 August 2011; Accepted 22 August 2011

Academic Editor: Yuriy Rogovchenko

Copyright © 2011 Najeeb Alam Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rafei, D. D. Ganji, H. Daniali, and H. Pashaei, “The variational iteration method for nonlinear oscillators with discontinuities,” Journal of Sound and Vibration, vol. 305, no. 4-5, pp. 614–620, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  2. Z. M. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Öziş and A. Yildirim, “A study of nonlinear oscillators with u1/3 force by He's variational iteration method,” Journal of Sound and Vibration, vol. 306, no. 1-2, pp. 372–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Beléndez, C. Pascual, M. Ortuño, T. Beléndez, and S. Gallego, “Application of a modified He's homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities,” Nonlinear Analysis, vol. 10, no. 2, pp. 601–610, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287–292, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. A. Beléndez, A. Hernández, T. Beléndez, E. Fernández, M. L. Álvarez, and C. Neipp, “Application of he's homotopy perturbation method to the duffin-harmonic oscillator,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 1, pp. 79–88, 2007. View at Publisher · View at Google Scholar
  7. N. A. Khan, M. Jamil, and A. Ara, “Multiple-parameter Hamiltonian approach for higher accurate approximations of a nonlinear oscillator with discontinuity,” International Journal of Differential Equations, vol. 2011, Article ID 649748, 7 pages, 2011. View at Publisher · View at Google Scholar
  8. H. M. Liu, “Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-Poincare method,” Chaos, Solitons & Fractals, vol. 23, no. 2, pp. 577–579, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  9. J. H. He, “Variational approach for nonlinear oscillators,” Chaos, Solitons & Fractals, vol. 34, no. 5, pp. 1430–1439, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. D. H. Shou, “Variational approach to the nonlinear oscillator of a mass attached to a stretched wire,” Physica Scripta, vol. 77, no. 4, Article ID 045006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Ö. Zengin, M. O. Kaya, and S. A. Demirbaǧ, “Application of parameter-expansion method to nonlinear oscillators with discontinuities,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 3, pp. 267–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. He, “Max-min approach to nonlinear oscillators,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 2, pp. 207–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Guo and A. Y. T. Leung, “The iterative homotopy harmonic balance method for conservative Helmholtz-Duffing oscillators,” Applied Mathematics and Computation, vol. 215, no. 9, pp. 3163–3169, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. A. E. Ebaid, “A reliable aftertreatment for improving the differential transformation method and its application to nonlinear oscillators with fractional nonlinearities,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 1, pp. 528–536, 2011. View at Publisher · View at Google Scholar
  15. V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, “New aspects of integrability of force-free Duffing-van der Pol oscillator and related nonlinear systems,” Journal of Physics: A, vol. 37, no. 16, pp. 4527–4534, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. S. Mukherjee, B. Roy, and S. Dutta, “Solution of the Duffing-van der pol oscillator equation by a differential transform method,” Physica Scripta, vol. 83, Article ID 015006, 2011. View at Publisher · View at Google Scholar
  17. N. A. Khan, A. Ara, S. A. Ali, and A. Mahmood, “Analytical study of Navier-Stokes equation with fractional orders using He's homotopy perturbation and variational iteration methods,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 9, pp. 1127–1134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. N. A. Khan, A. Ara, and A. Mahmood, “Approximate solution of time-fractional chemical engineering equations: a comparative study,” International Journal of Chemical Reactor Engineering, vol. 8, article A19, 2010. View at Scopus
  19. N. A. Khan, M. Jamil, and A. Ara, “An efficient approach for solving the Riccati equation with fractional orders,” Computers and Mathematics with Applications, vol. 61, pp. 2683–2689, 2011. View at Publisher · View at Google Scholar
  20. M. Madani and M. Fathizadeh, “Homotopy perturbation algorithm using Laplace transformation,” Nonlinear Science Letters: A, vol. 1, pp. 263–267, 2010.
  21. N. A. Khan, M. Jamil, A. Ara, and N.-U. Khan, “On efficient method for system of fractional differential equations,” Advances in Difference Equations, Article ID 303472, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH