Abstract

We study the existence of periodic solutions for n-th order functional differential equations 𝑥(𝑛)(𝑡)=𝑛1𝑖=0𝑏𝑖[𝑥(𝑖)(𝑡)]𝑘+𝑓(𝑥(𝑡𝜏(𝑡)))+𝑝(𝑡). Some new results on the existence of periodic solutions of the equations are obtained. Our approach is based on the coincidence degree theory of Mawhin.

1. Introduction

In this paper, we are concerned with the existence of periodic solutions of the following 𝑛-th order functional differential equations: 𝑥(𝑛)(𝑡)=𝑛1𝑖=0𝑏𝑖𝑥(𝑖)(𝑡)𝑘+𝑓(𝑥(𝑡𝜏(𝑡)))+𝑝(𝑡),(1.1) where 𝑏𝑖,𝑖=0,1,,𝑛1 are constants, 𝑘 is a positive odd, 𝑓𝐶1(𝑅,𝑅) for 𝑥𝑅, 𝑝𝐶(𝑅,𝑅) with 𝑝(𝑡+𝑇)=𝑝(𝑡).

In recent years, there are many papers studying the existence of periodic solutions of first-, second- or third-order differential equations [112]. For example, in [5], Zhang and Wang studied the following differential equations: 𝑥(𝑡)+𝑎𝑥2𝑘1(𝑡)+𝑏𝑥2𝑘1(𝑡)+𝑐𝑥2𝑘1(𝑡)+𝑔𝑡,𝑥𝑡𝜏1,𝑥𝑡𝜏2=𝑝(𝑡).(1.2) The authors established the existence of periodic solutions of (1.2) under some conditions on 𝑎,𝑏,𝑐, and 2𝑘1.

In [1324], periodic solutions for 𝑛, 2𝑛, and 2𝑛+1 th order differential equations were discussed. For example, in [22, 24], Pan et al. studied the existence of periodic solutions of higher order differential equations of the form 𝑥(𝑛)(𝑡)=𝑛1𝑖=1𝑏𝑖𝑥(𝑖)(𝑡)+𝑓𝑡,𝑥(𝑡),𝑥𝑡𝜏1(𝑡),,𝑥𝑡𝜏𝑚(𝑡)+𝑝(𝑡).(1.3) The authors obtained the results based on the damping terms 𝑥(𝑖)(𝑡) and the delay 𝜏𝑖(𝑡).

In present paper, by using Mawhin’s continuation theorem, we will establish some theorems on the existence of periodic solutions of (1.1). The results are related to not only 𝑏𝑖 and 𝑓(𝑡,𝑥) but also the positive odd 𝑘. In addition, we give an example to illustrate our new results.

2. Some Lemmas

We investigate the theorems based on the following lemmas.

Lemma 2.1 (see [17]). Let 𝑛1>1,𝛼[0,+) be constants, 𝑠𝐶(𝑅,𝑅) with 𝑠(𝑡+𝑇)=𝑠(𝑡), and 𝑠(𝑡)[𝛼,𝛼],forall𝑡[0,𝑇]. Then for 𝑥𝐶1(𝑅,𝑅) with 𝑥(𝑡+𝑇)=𝑥(𝑡), one has 𝑇0||||𝑥(𝑡)𝑥(𝑡𝑠(𝑡))𝑛1𝑑𝑡2𝛼𝑛1𝑇0||𝑥||(𝑡)𝑛1𝑑𝑡.(2.1)

Lemma 2.2. Let 𝑘1,𝛼[0,+)be constants, 𝑠𝐶(𝑅,𝑅) with 𝑠(𝑡+𝑇)=𝑠(𝑡), and 𝑠(𝑡)[𝛼,𝛼],forall𝑡[0,𝑇]. Then for 𝑥𝐶1(𝑅,𝑅) with 𝑥(𝑡+𝑇)=𝑥(𝑡), one has 𝑇0||𝑥𝑘(𝑡)𝑥𝑘||(𝑡𝑠(𝑡))(𝑘+1)/𝑘𝑑𝑡2𝛼(𝑘+1)/𝑘𝑘1/𝑘(𝑘1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡+𝑇0||𝑥||(𝑡)𝑘+1.𝑑𝑡(2.2)

Proof. Let 𝐹(𝑡)=𝑥𝑘(𝑡). By Lemma 2.2, one has 𝑇0||𝑥𝑘(𝑡)𝑥𝑘||(𝑡𝑠(𝑡))(𝑘+1)/𝑘𝑑𝑡=𝑇0||||𝐹(𝑡)𝐹(𝑡𝑠(𝑡))(𝑘+1)/𝑘𝑑𝑡2𝛼(𝑘+1)/𝑘𝑇0||𝐹||(𝑡)(𝑘+1)/𝑘𝑑𝑡=2𝛼(𝑘+1)/𝑘𝑇0||𝑘𝑥𝑘1(𝑡)𝑥||(𝑡)(𝑘+1)/𝑘𝑑𝑡=2𝛼(𝑘+1)/𝑘𝑘(𝑘+1)/𝑘𝑇0||||𝑥(𝑡)((𝑘1)(𝑘+1))/𝑘||𝑥||(𝑡)(𝑘+1)/𝑘𝑑𝑡.(2.3) By inequality 𝑥𝑥𝑦𝑝𝑝+𝑦𝑞𝑞1,𝑥0,𝑦0,𝑝+1𝑞=1,(2.4) one has ||||𝑥(𝑡)((𝑘1)(𝑘+1))/𝑘||𝑥||(𝑡)(𝑘+1)/𝑘||||(𝑘1)𝑥(𝑡)𝑘+1𝑘+||𝑥||(𝑡)𝑘+1𝑘.(2.5) Thus we obtain 𝑇0||𝑥𝑘(𝑡)𝑥𝑘||(𝑡𝑠(𝑡))(𝑘+1)/𝑘𝑑𝑡2𝛼(𝑘+1)/𝑘𝑘1/𝑘(𝑘1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡+𝑇0||𝑥||(𝑡)𝑘+1.𝑑𝑡(2.6)

Lemma 2.3. If 𝑘1 is an integer, 𝑥𝐶𝑛(𝑅,𝑅), and 𝑥(𝑡+𝑇)=𝑥(𝑡), then 𝑇0||𝑥||(𝑡)𝑘𝑑𝑡1/𝑘𝑇𝑇0||𝑥||(𝑡)𝑘𝑑𝑡1/𝑘𝑇𝑛1𝑇0||𝑥(𝑛)||(𝑡)𝑘𝑑𝑡1/𝑘.(2.7)

The proof of Lemma 2.3 is easy, here we omit it.

We first introduce Mawhin’s continuation theorem.

Let 𝑋 and 𝑌 be Banach spaces, 𝐿𝐷(𝐿)𝑋𝑌 are a Fredholm operator of index zero, here 𝐷(𝐿) denotes the domain of 𝐿. 𝑃𝑋𝑋,𝑄𝑌𝑌 be projectors such that Im𝑃=Ker𝐿,Ker𝑄=Im𝐿,𝑋=Ker𝐿Ker𝑃,𝑌=Im𝐿Im𝑄.(2.8) It follows that 𝐿𝐷(𝐿)Ker𝑃𝐷(𝐿)Ker𝑃Im𝐿(2.9) is invertible, we denote the inverse of that map by 𝐾𝑝. Let Ω be an open bounded subset of 𝑋, 𝐷(𝐿)Ω, the map 𝑁𝑋𝑌 will be called 𝐿-compact in Ω, if 𝑄𝑁(Ω) is bounded and 𝐾𝑝(𝐼𝑄)𝑁Ω𝑋 is compact.

Lemma 2.4 (see [25]). Let 𝐿 be a Fredholm operator of index zero and let 𝑁 be 𝐿-compact on Ω. Assume that the following conditions are satisfied: (i)𝐿𝑥𝜆𝑁𝑥,forall𝑥𝜕Ω𝐷(𝐿),𝜆(0,1);(ii)𝑄𝑁𝑥0,forall𝑥𝜕ΩKer𝐿;(iii)deg{𝑄𝑁𝑥,ΩKer𝐿,0}0,then the equation 𝐿𝑥=𝑁𝑥 has at least one solution in Ω𝐷(𝐿).

Now, we define 𝑌={𝑥𝐶(𝑅,𝑅)𝑥(𝑡+𝑇)=𝑥(𝑡)} with the norm |𝑥|=max𝑡[0,𝑇]{|𝑥(𝑡)|} and 𝑋={𝑥𝐶𝑛1(𝑅,𝑅)𝑥(𝑡+𝑇)=𝑥(𝑡)} with norm 𝑥=max{|𝑥|,|𝑥|,,|𝑥(𝑛1)|}. It is easy to see that 𝑋,𝑌 are two Banach spaces. We also define the operators 𝐿 and 𝑁 as follows: 𝐿𝐷(𝐿)𝑋𝑌,𝐿𝑥=𝑥(𝑛),𝐷(𝐿)={𝑥𝑥𝐶𝑛(𝑅,𝑅),𝑥(𝑡+𝑇)=𝑥(𝑡)},𝑁𝑋𝑌,𝑁𝑥=𝑛1𝑖=1𝑏𝑖𝑥(𝑖)(𝑡)𝑘𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))+𝑝(𝑡).(2.10) It is easy to see that (1.1) can be converted to the abstract equation 𝐿𝑥=𝑁𝑥. Moreover, from the definition of 𝐿, we see that ker𝐿=𝑅, dim(ker𝐿)=1, Im𝐿={𝑦𝑦𝑌,𝑇0𝑦(𝑠)𝑑𝑠=0} is closed, and dim(𝑌Im𝐿)=1, one has codim(Im𝐿)=dim(ker𝐿). So 𝐿 is a Fredholm operator with index zero. Let 1𝑃𝑋ker𝐿,𝑃𝑥=𝑥(0),𝑄𝑌𝑌Im𝐿,𝑄𝑦=𝑇𝑇0𝑦(𝑡)𝑑𝑡,(2.11) and let 𝐿|𝐷(𝐿)Ker𝑃𝐷(𝐿)Ker𝑃Im𝐿.(2.12) Then 𝐿|𝐷(𝐿)Ker𝑃 has a unique continuous inverse 𝐾𝑝. One can easily find that 𝑁 is 𝐿-compact in Ω, where Ω is an open bounded subset of 𝑋.

3. Main Result

Theorem 3.1. Suppose 𝑛=2𝑚+1, 𝑚>0 an integer and the following conditions hold:(𝐻1)The function 𝑓 satisfies lim𝑥|||𝑓(𝑡,𝑥)𝑥𝑘|||𝛾,(3.1)||𝑓(𝑡,𝑥)f||||𝑥(𝑡,𝑦)𝛽𝑘𝑦𝑘||,(3.2) where 𝛾0.(𝐻2)||𝑏0||>𝛾+𝜃2.(3.3)(𝐻3)There is a positive integer 0<𝑠𝑚 such that 𝑏2𝑠0,if𝑏𝑠=𝑚,2𝑠0,𝑏2𝑠+𝑖=0,𝑖=1,2,,2𝑚2𝑠,if0<𝑠<𝑚.(3.4)(𝐻4)𝐴2(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘+𝛾+𝜃2𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||𝛾𝜃2||𝑏+𝑘0||𝑇2𝑠𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||𝛾𝜃2(𝑘1)/𝑘<||𝑏2𝑠||,if𝜃1<𝑠𝑚,1𝑇𝑘+𝛾+𝜃2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||𝛾𝜃2||𝑏+𝑘0||𝑇2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||𝛾𝜃2(𝑘1)/𝑘<||𝑏2||,if𝑠=1,(3.5) where 𝐴1(𝑠,𝑘)=𝑠𝑖=1|𝑏𝑖|𝑇(𝑠𝑖)𝑘, 𝐴2(𝑠,𝑘)=𝑠2𝑖=1|𝑏𝑖|𝑇(𝑠𝑖)𝑘, 𝜃1=2𝑘/(𝑘+1)𝛽|𝜏(𝑡)|𝑘1/(𝑘+1), 𝜃2=2𝑘/(𝑘+1)𝛽|𝜏(𝑡)|𝑘1/(𝑘+1)(𝑘1)𝑘/(𝑘+1). Then (1.1) has at least one 𝑇-periodic solution.

Proof. Consider the equation 𝐿𝑥=𝜆𝑁𝑥,𝜆(0,1),(3.6) where 𝐿 and 𝑁 are defined by (2.10). Let Ω1=𝑥𝐷(𝐿)Ker𝐿,𝐿𝑥=𝜆𝑁𝑥forsome.𝜆(0,1)(3.7) For 𝑥Ω1, one has 𝑥(𝑛)(𝑡)=𝜆2𝑠𝑖=0𝑏𝑖𝑥(𝑖)(𝑡)𝑘.+𝜆𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))+𝜆𝑝(𝑡),𝜆(0,1)(3.8) Multiplying both sides of (3.8) by 𝑥(𝑡), and integrating them on [0,𝑇], one has for 𝜆(0,1)𝑇0𝑥(𝑛)(𝑡)𝑥(𝑡)𝑑𝑡=𝜆2𝑠𝑖=0𝑏𝑖𝑇0𝑥(𝑖)(𝑡)𝑘𝑥(𝑡)𝑑𝑡+𝜆𝑇0𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))𝑥(𝑡)𝑑𝑡+𝜆𝑇0𝑝(𝑡)𝑥(𝑡)𝑑𝑡.(3.9) Since for any positive integer 𝑖, 𝑇0𝑥(2𝑖1)(𝑡)𝑥(𝑡)𝑑𝑡=0,(3.10) and in view of 𝑛=2𝑚+1 and 𝑘 is odd, it follows from (3.3) and (3.9) that ||𝑏0||𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡2𝑠𝑖=1||𝑏𝑖||𝑇0||𝑥(𝑖)||(𝑡)𝑘||||𝑥(𝑡)𝑑𝑡+𝑇0||||||||𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))𝑥(𝑡)𝑑𝑡+𝑇0||||||||𝑝(𝑡)𝑥(𝑡)𝑑𝑡2𝑠𝑖=1||𝑏𝑖||𝑇0||𝑥(𝑖)||(𝑡)𝑘||||𝑥(𝑡)𝑑𝑡+𝑇0||||||||+𝑓(𝑡,𝑥(𝑡))𝑥(𝑡)𝑑𝑡𝑇0||||||||𝑓(𝑡,𝑥)𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))𝑥(𝑡)𝑑𝑡+𝑇0||||||||𝑝(𝑡)𝑥(𝑡)𝑑𝑡.(3.11) By using Hölder inequality and Lemma 2.1, from (3.11), we obtain ||𝑏0||𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)2𝑠𝑖=1||𝑏𝑖||𝑇0||𝑥(𝑖)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑓(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑓(𝑡,𝑥)𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑝(𝑡)(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)2𝑠𝑖=1||𝑏𝑖||𝑇(2𝑠𝑖)𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑓(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑓(𝑡,𝑥)𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+||||𝑝(𝑡)𝑇𝑘/(𝑘+1).(3.12) So ||𝑏0||𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)𝐴1(2𝑠,𝑘)𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑇0||𝑓||(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑓(𝑡,𝑥(𝑡))𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+𝑢1,(3.13) where 𝑢1 is a positive constant. Choosing a constant 𝜀>0 such that 𝛾+𝜀+𝜃2<||𝑏0||,(3.14)𝐴2(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘+𝛾+𝜀+𝜃2𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||(𝛾+𝜀)𝜃2||𝑏+𝑘0||𝑇2𝑠𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||(𝛾+𝜀)𝜃2(𝑘1)/𝑘<||𝑏2𝑠||,if𝜃1<𝑠𝑚,1𝑇𝑘+𝛾+𝜀+𝜃2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||(𝛾+𝜀)𝜃2||𝑏+𝑘0||𝑇2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||(𝛾+𝜀)𝜃2(𝑘1)/𝑘<||𝑏2||,if𝑠=1,(3.15) for the above constant 𝜀>0, we see from (3.1) that there is a constant 𝛿>0 such that ||||||||𝑓(𝑡,𝑥(𝑡))<(𝛾+𝜀)𝑥(𝑡)𝑘,for||||[].𝑥(𝑡)>𝛿,𝑡0,𝑇(3.16) Denote Δ1=[]||𝑥||𝑡0,𝑇(𝑡)𝛿,Δ2=[]||𝑥||.𝑡0,𝑇(𝑡)>𝛿(3.17) Since 𝑇0||||𝑓(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑑𝑡Δ1||||𝑓(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑑𝑡+Δ2||||𝑓(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑓𝑑𝑡𝛿(𝑘+1)/𝑘𝑇+(𝛾+𝜀)(𝑘+1)/𝑘𝑇0||||𝑥(𝑡)𝑘+1=𝑓𝑑𝑡𝛿(𝑘+1)/𝑘𝑇+(𝛾+𝜀)(𝑘+1)/𝑘𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡,(3.18) using inequality (𝑎+𝑏)𝑙𝑎𝑙+𝑏𝑙for𝑎0,𝑏0,0𝑙1,(3.19) it follows from (3.18) that 𝑇0||||𝑓(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)𝑓𝛿𝑇𝑘/(𝑘+1)+(𝛾+𝜀)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1).(3.20) From (3.2) and by Lemma 2.2, one has 𝑇0||||𝑓(𝑡,𝑥(𝑡))𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)𝛽𝑇0||𝑥𝑘(𝑡)𝑥𝑘||(𝑡𝜏(𝑡))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)2𝑘/(𝑘+1)𝛽||||𝜏(𝑡)𝑘1/(𝑘+1)(𝑘1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡+𝑇0||𝑥||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)2𝑘/(𝑘+1)𝛽||||𝜏(𝑡)𝑘1/(𝑘+1)(𝑘1)𝑘/(𝑘+1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑇0||𝑥||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)2𝑘/(𝑘+1)𝛽||||𝜏(𝑡)𝑘1/(𝑘+1)(𝑘1)𝑘/(𝑘+1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+2𝑘/(𝑘+1)𝛽||||𝜏(𝑡)𝑘1/(𝑘+1)𝑇(2𝑠1)𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)=𝜃2𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝜃1𝑇(2𝑠1)𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1).(3.21) Substituting the above formula into (3.13), one has ||𝑏0||(𝛾+𝜀)𝜃2𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑢2,(3.22) where 𝑢2 is a positive constant. That is 𝑇0||||𝑥(𝑡)k+1𝑑𝑡𝑘/(𝑘+1)𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||(𝛾+𝜀)𝜃2𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑢3,(3.23) where 𝑢3 is a positive constant.

On the other hand, multiplying both sides of (3.8) by 𝑥(2𝑠)(𝑡), and integrating on [0,𝑇], one has 𝑇0𝑥(𝑛)(𝑡)𝑥(2𝑠)=(𝑡)𝑑𝑡2𝑠𝑖=0𝑏𝑖𝑇0𝑥(𝑖)(𝑡)𝑘𝑥(2𝑠)(𝑡)𝑑𝑡+𝑇0𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))𝑥(2𝑠)(𝑡)𝑑𝑡+𝑇0𝑝(𝑡)𝑥(2𝑠)(𝑡)𝑑𝑡.(3.24)

If 1<𝑠𝑚, since 𝑇0𝑥(2𝑚+1)(𝑡)𝑥(2𝑠)(𝑡)𝑑𝑡=0,𝑇0𝑥(2𝑠1)(𝑡)𝑘𝑥(2𝑠)(𝑡)𝑑𝑡=0,(3.25)𝑇0[]𝑥(𝑡)𝑘𝑥(2𝑠)(𝑡)𝑑𝑡=𝑘𝑇0[]𝑥(𝑡)𝑘1𝑥(2𝑠1)(𝑡)𝑥(𝑡)𝑑𝑡,(3.26) by using Hölder inequality and Lemma 2.1, from (3.23), one has ||𝑏2𝑠||𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑇0||𝑥(2𝑠)||(𝑡)2𝑠2𝑖=1||𝑏𝑖||||𝑥(𝑖)||(𝑡)𝑘+||||+||||||𝑏𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))𝑝(𝑡)𝑑𝑡+𝑘0||𝑇0||𝑥||(𝑡)𝑘1||𝑥(2𝑠1)||||𝑥(𝑡)||(𝑡)𝑑𝑡𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)2𝑠2𝑖=1||𝑏𝑖||𝑇(2𝑠𝑖)𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑓(𝑡,𝑥(𝑡))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+𝑇0||||𝑓(𝑡,𝑥(𝑡))𝑓(𝑡,𝑥(𝑡𝜏))(𝑘+1)/𝑘𝑑𝑡𝑘/(𝑘+1)+||||𝑝(𝑡)𝑇𝑘/(𝑘+1)||𝑏+𝑘0||||𝑥||(𝑡)𝑇0||||𝑥(𝑡)𝑘1||𝑥(2𝑠1)||(𝑡)𝑑𝑡.(3.27) Since 𝑥(0)=𝑥(𝑇), there exists 𝜉[0,𝑇] such that 𝑥(𝜉)=0. So for 𝑡[0,𝑇]𝑥(𝑡)=𝑥(𝜉)+𝑡𝜉𝑥(𝜎)𝑑𝜎.(3.28) Using Hölder inequality and Lemma 2.1, one has ||𝑥||(𝑡)𝑇0||𝑥||(𝑡)𝑑𝑡𝑇𝑘/(𝑘+1)𝑇0||𝑥||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)𝑇2𝑠1(1/(𝑘+1))𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1).(3.29) Using inequality 1𝑇𝑇0||||||𝑥(𝑡)𝑟||1/𝑟1𝑇𝑇0|||||||𝑥(𝑡)𝑙|||1/𝑙for0𝑟𝑙,𝑥𝑅.(3.30) and applying Hölder inequality and by Lemma 2.1, we obtain 𝑇0||||𝑥(𝑡)𝑘1||𝑥(2𝑠1)||(𝑡)𝑑𝑡𝑇0||||𝑥(𝑡)𝑘𝑑𝑡(𝑘1)/𝑘𝑇0||𝑥(2𝑠1)||(𝑡)𝑘𝑑𝑡1/𝑘𝑇1/(𝑘+1)𝑇0||𝑥||(𝑡)𝑘+1𝑑𝑡(𝑘1)/(𝑘+1)𝑇0||𝑥(2𝑠1)||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)𝑇1+1/(𝑘+1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡(𝑘1)/(𝑘+1)𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1).(3.31) Substituting the above formula, (3.20), (3.27), and (3.30) into (3.26), one has ||𝑏2𝑠||𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑇0||𝑥(2𝑠)(||𝑡)𝑘+1𝑑𝑡1/(𝑘+1)𝐴2(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘𝑇0||𝑥(2𝑠)(||𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+(𝛾+𝜀)+𝜃2𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+||||𝑝(𝑡)+𝑓𝛿𝑇𝑘/(𝑘+1)||𝑏+𝑘0||𝑇2𝑠𝑇0||𝑥(2𝑠)(||𝑡)𝑘+1𝑑𝑡2/(𝑘+1)𝑇0|||||||𝑥(𝑡)𝑘+1|||𝑑𝑡(𝑘1)/(𝑘+1).(3.32) Then, one has ||𝑏2𝑠||𝐴2(2𝑠,𝑘)𝜃1𝑇(2𝑠1)𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)||𝑏𝑘0||𝑇2𝑠𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)𝑇0|||||||𝑥(𝑡)𝑘+1|||𝑑𝑡(𝑘1)/(𝑘+1)+(𝛾+𝜀)+𝜃2𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+𝑢4,(3.33) where 𝑢4 is a positive constant. Using inequality (𝑎+𝑏)𝑙𝑎𝑙+𝑏𝑙for𝑎0,𝑏0,0𝑙1,(3.34) it follows from (3.23) that 𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡(𝑘1)/(𝑘+1)𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||(𝛾+𝜀)𝜃2(𝑘1)/𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡(𝑘1)/(𝑘+1)+𝑢5,(3.35) where 𝑢5 is a positive constant. Substituting the above formula and (3.23) into (3.33), one has ||𝑏2𝑠||𝐴2(2𝑠,𝑘)𝜃1𝑇(2𝑠1)𝑘𝛾+𝜀+𝜃2𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||(𝛾+𝜀)𝜃2||𝑏𝑘0||𝑇2𝑠𝐴1(2𝑠,𝑘)+𝜃1𝑇(2𝑠1)𝑘||𝑏0||(𝛾+𝜀)𝜃2(𝑘1)/𝑘𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)𝑢5𝑘||𝑏0||𝑇2𝑠𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)+𝑢6,(3.36) where 𝑢6 is a positive constant.

If 𝑠=1, since 𝑇0[𝑥(𝑡)]𝑘𝑥(𝑡)𝑑𝑡=0,𝑇0[𝑥(𝑡)]𝑘𝑥(𝑡)𝑑𝑡=𝑘𝑇0[𝑥(𝑡)]𝑘1[𝑥(𝑡)]2𝑑𝑡, from (3.24), one has 𝑏2𝑇0𝑥(𝑡)𝑘+1𝑑𝑡=𝑘𝑏0𝑇0[]𝑥(𝑡)𝑘1𝑥(𝑡)2𝑑𝑡𝑇0𝑓(𝑡,𝑥(𝑡𝜏))𝑥(𝑡)𝑑𝑡+𝑇0𝑝(𝑡)𝑥(𝑡)𝑑𝑡.(3.37) Applying the above method, one has ||𝑏2||𝜃1𝑇𝑘𝛾+𝜀+𝜃2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||(𝛾+𝜀)𝜃2||𝑏𝑘0||𝑇2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||(𝛾+𝜀)𝜃2(𝑘1)/𝑘×𝑇0||𝑥||(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)𝑢7𝑘||𝑏0||𝑇2𝑇0||𝑥||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)+𝑢8,(3.38) where 𝑢7,𝑢8 is a positive constant. Hence there is a constant 𝑀1,𝑀2>0 such that 𝑇0||𝑥(2𝑠)||(𝑡)𝑘+1𝑑𝑡𝑀1,(3.39)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑀2.(3.40) From (3.5), using Hölder inequality and Lemma 2.1, one has 𝑇0||𝑥(𝑛)||(𝑡)𝑑𝑡2𝑠𝑖=0||𝑏𝑖||𝑇0||𝑥(𝑖)||(𝑡)𝑘𝑑𝑡+𝑇0||||+𝑓(𝑡,𝑥(𝑡))𝑑𝑡𝑇0||||𝑓(𝑡,𝑥(𝑡))𝑓(𝑡,𝑥(𝑡𝜏(𝑡)))𝑑𝑡+𝑇0||||𝑝(𝑡)𝑑𝑡2𝑠𝑖=1||𝑏𝑖||𝑇(2𝑠𝑖)𝑘+1/(𝑘+1)+𝜃1𝑇(2𝑠1)𝑘+1/(𝑘+1)𝑇0||𝑥(2𝑠)(||𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+||𝑏0||+(𝛾+𝜀)+𝜃2𝑇1/(𝑘+1)𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)+||||𝑝(𝑡)+𝑓𝛿𝑇2𝑠𝑖=1||𝑏𝑖||𝑇(2𝑠𝑖)𝑘+1/(𝑘+1)+𝜃1𝑇(2𝑠1)𝑘+1/(𝑘+1)𝑀1𝑘/(𝑘+1)+||𝑏0||+(𝛾+𝜀)+𝜃2𝑀2𝑘/(𝑘+1)+||||𝑝(𝑡)+𝑓𝛿𝑇=𝑀,(3.41) where 𝑀 is a positive constant. We claim that ||𝑥(𝑖)||(𝑡)𝑇𝑛𝑖1𝑇0||𝑥(𝑛)||(𝑡)𝑑𝑡,𝑖=1,2,,𝑛1.(3.42) In fact, noting that 𝑥(𝑛2)(0)=𝑥(𝑛2)(𝑇), there must be a constant 𝜉1[0,𝑇] such that 𝑥(𝑛1)(𝜉1)=0, we obtain ||𝑥(𝑛1)||=||||𝑥(𝑡)(𝑛1)𝜉1+𝑡𝜉1𝑥(𝑛)||||||𝑥(𝑠)𝑑𝑠(𝑛1)𝜉1||+𝑇0||𝑥(𝑛)||(𝑡)𝑑𝑡=𝑇0||𝑥(𝑛)||(𝑡)𝑑𝑡.(3.43) Similarly, since 𝑥(𝑛3)(0)=𝑥(𝑛3)(𝑇), there must be a constant 𝜉2[0,𝑇] such that 𝑥(𝑛2)(𝜉2)=0, from (3.43) we get ||𝑥(𝑛2)||=||||𝑥(𝑡)(𝑛2)𝜉2+𝑡𝜉2𝑥(𝑛1)||||(𝑠)𝑑𝑠𝑇0||𝑥(𝑛1)||(𝑡)𝑑𝑡𝑇𝑇0||𝑥(𝑛)||(𝑡)𝑑𝑡.(3.44) By induction, we conclude that (3.42) holds. Furthermore, one has ||𝑥(𝑖)||(𝑡)𝑇𝑛𝑖1𝑇0||𝑥(𝑛)||(𝑡)𝑑𝑡𝑇𝑛𝑖1𝑀,𝑖=1,2,,𝑛1.(3.45) It follows from (3.39) that there exists a 𝜉[0,𝑇] such that |𝑥(𝜉)|𝑀21/(𝑘+1). Applying Lemma 2.1, we get ||||𝑥(𝑡)𝑥(𝜉)+𝑡𝜉𝑥(𝑡)𝑑𝑡𝑀21/(𝑘+1)+𝑇𝑘/(𝑘+1)𝑇0||𝑥||(𝑡)𝑘+1𝑑𝑡1/(𝑘+1)𝑀21/(𝑘+1)+𝑇2𝑠1+(𝑘/(𝑘+1))𝑇0||𝑥(2𝑠)(||𝑡)𝑘+1𝑑𝑡1/(𝑘+1)=𝑀21/(𝑘+1)+𝑇2𝑠1+(𝑘/(𝑘+1))𝑀11/(𝑘+1).(3.46) It follows that there is a constant 𝐴>0 such that 𝑥𝐴. Thus Ω1 is bounded.

Let Ω2={𝑥Ker𝐿,𝑄𝑁𝑥=0}. Suppose 𝑥Ω2, then 𝑥(𝑡)=𝑑𝑅 and satisfies 1𝑄𝑁𝑥=𝑇𝑇0𝑏0𝑑𝑘𝑓(𝑡,𝑑)+𝑝(𝑡)𝑑𝑡=0.(3.47) We will prove that there exists a constant 𝐵>0 such that |𝑑|𝐵. If |𝑑|𝛿, taking 𝛿=𝐵, we get |𝑑|𝐵. If |𝑑|>𝛿, from (3.47), one has ||𝑏0||||𝑑||𝑘=||||1𝑇𝑇0[]||||1𝑓(𝑡,𝑑)+𝑝(𝑡)𝑑𝑡𝑇𝑇0||||||||𝑓(𝑡,𝑑)𝑑𝑡+𝑝(𝑡)||𝑑||(𝛾+𝜀)𝑘+||||𝑝(𝑡).(3.48) Thus ||𝑑||||||𝑝(𝑡)||𝑏0||(𝛾+𝜀)1/𝑘.(3.49) Taking [|𝑝(𝑡)|/(|𝑏0|(𝛾+𝜀))]1/𝑘=𝐵, one has |𝑑|𝐵, which implies Ω2 is bounded. Let Ω be a nonempty open bounded subset of 𝑋 such that ΩΩ1Ω2. We can easily see that 𝐿 is a Fredholm operator of index zero and 𝑁 is 𝐿-compact on Ω. Then by the above argument, we have(i)𝐿𝑥𝜆𝑁𝑥,forall𝑥𝜕Ω𝐷(𝐿),𝜆(0,1), (ii)𝑄𝑁𝑥0,forall𝑥𝜕ΩKer𝐿.

At last we will prove that condition (iii) of Lemma 2.4 is satisfied. We take []𝐻(ΩKer𝐿)×0,1Ker𝐿,𝐻(𝑑,𝜇)=𝜇𝑑+1𝜇𝑇𝑇0𝑏0𝑑𝑘𝑓(𝑡,𝑑)+𝑝(𝑡)𝑑𝑡.(3.50) From assumptions (𝐻1) and (𝐻2), we can easily obtain 𝐻(𝑑,𝜇)0,forall(𝑑,𝜇)𝜕ΩKer𝐿×[0,1], which results in .deg{𝑄𝑁,ΩKer𝐿,0}=deg{𝐻(,0),ΩKer𝐿,0}=deg{𝐻(,1),ΩKer𝐿,0}0(3.51)

Hence, by using Lemma 2.2, we know that (1.1) has at least one 𝑇-periodic solution.

Theorem 3.2. Suppose 𝑛=4𝑚+1, 𝑚>0 an integer and conditions (𝐻1),(𝐻2) hold. If(𝐻5)there is a positive integer 0<𝑠𝑚 such that 𝑏4𝑠30,𝑏4𝑠3+𝑖=0,𝑖=1,2,,4𝑚4𝑠+3,(3.52)(𝐻6)𝐴2(4𝑠3,𝑘)+𝜃1𝑇(4𝑠4)𝑘+𝛾+𝜃2𝐴1(4𝑠3,𝑘)+𝜃1𝑇(4𝑠4)𝑘||𝑏0||𝛾𝜃2||𝑏+𝑘0||𝑇4𝑠3𝐴1(4𝑠3,𝑘)+𝜃1𝑇4𝑠4||𝑏0||𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠3||,if𝜃1<𝑠𝑚,1+𝛾+𝜃2𝐴1(1,𝑘)+𝜃1||𝑏0||𝛾𝜃2<||𝑏1||,if𝑠=1,(3.53) then (1.1) has at least one 𝑇-periodic solution.

Proof. From the proof of Theorem 3.1, one has 𝑇0||||𝑥(𝑡)𝑘+1𝑑𝑡𝑘/(𝑘+1)𝐴1(4𝑠3,𝑘)+𝜃1𝑇(4𝑠4)𝑘||𝑏0||(𝛾+𝜀)𝜃2𝑇0||𝑥(4𝑠3)||(𝑡)𝑘+1𝑑𝑡𝑘/(k+1)+𝑢9,(3.54) where 𝑢9 is a positive constant. Multiplying both sides of (3.8) by 𝑥(4𝑠3)(𝑡), and integrating on [0,𝑇], one has 𝑇0𝑥(𝑛)(𝑡)𝑥(4𝑠3)(𝑡)𝑑𝑡=𝜆4𝑠3𝑖=0𝑏𝑖𝑇0𝑥(𝑖)(𝑡)𝑘𝑥(4𝑠3)(𝑡)𝑑𝑡𝜆𝑇0𝑓(𝑡,𝑥(𝑡𝜏))𝑥(4𝑠3)(𝑡)𝑑𝑡+𝜆𝑇0𝑝(𝑡)𝑥(4𝑠3)(𝑡)𝑑𝑡.(3.55) Since 𝑇0𝑥(4𝑚+1)(𝑡)𝑥(4𝑠3)(𝑡)𝑑𝑡=(1)2𝑚2𝑠+2𝑇0𝑥(2𝑚+2𝑠1)(𝑡)2𝑑𝑡,(3.56) then it follows from (3.55) and (3.56) that 𝑏4𝑠3𝑇0||𝑥(4𝑠3)||(𝑡)𝑘+1𝑑𝑡4𝑠4𝑖=0𝑏𝑖𝑇0𝑥(𝑖)(𝑡)𝑘𝑥(4𝑠3)(𝑡)𝑑𝑡𝑇0𝑓(𝑡,𝑥(𝑡𝜏))𝑥(4𝑠3)(𝑡)𝑑𝑡+𝑇0𝑝(𝑡)𝑥(4𝑠3)(𝑡)𝑑𝑡.(3.57)

By using the same way as in the proof of Theorem 3.1, the following theorems can be proved in case 1<𝑠𝑚 or 𝑠=1.

Theorem 3.3. Suppose 𝑛=4𝑚+1, 𝑚>0 for a positive integer and conditions (𝐻1),(𝐻2) hold. If(𝐻7)there is a positive integer 0<𝑠𝑚 such that 𝑏4𝑠10,𝑏4𝑠1+𝑖=0,𝑖=1,2,,4𝑚4𝑠+1,(3.58)(𝐻8)𝐴2(4𝑠1,𝑘)+𝜃1𝑇(4𝑠2)𝑘+𝛾+𝜃2𝐴1(4𝑠1,𝑘)+𝜃1𝑇(4𝑠2)𝑘||𝑏0||𝛾𝜃2||𝑏+𝑘0||𝑇4𝑠1𝐴1(4𝑠1,𝑘)+𝜃1𝑇(4𝑠2)𝑘||𝑏0||𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠1||,(3.59) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.4. Suppose 𝑛=4𝑚+3,  𝑚0 an integer and conditions (𝐻1),(𝐻2) hold. If(𝐻9)there is a positive integer 0𝑠𝑚 such that 𝑏4𝑠+10,𝑏4𝑠+1+𝑖=0,𝑖=1,2,,4𝑚4𝑠+1,(3.60)(𝐻10)𝐴2(4𝑠+1,𝑘)+𝜃1𝑇4𝑠𝑘+𝛾+𝜃2𝐴1(4𝑠+1,𝑘)+𝜃1𝑇4𝑠𝑘||𝑏0||𝛾𝜃2||𝑏+𝑘0||𝑇4𝑠+1𝐴1(4𝑠+1,𝑘)+𝜃1𝑇4𝑠𝑘||𝑏0||𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠+1||,if𝜃0<𝑠𝑚,1+𝛾+𝜃2𝐴1(1,𝑘)+𝜃1||𝑏0||𝛾𝜃2<||𝑏1||,if𝑠=0,(3.61) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.5. Suppose 𝑛=4𝑚+3,𝑚>0 an integer and conditions (𝐻1),(𝐻2) hold. If(𝐻11) there is a positive integer 0<𝑠𝑚 such that 𝑏4𝑠10,𝑏4𝑠1+𝑖=0,𝑖=1,2,,4𝑚4𝑠+3,(3.62)(𝐻12)𝐴2(41,k)+𝜃1𝑇(4𝑠2)𝑘+𝛾+𝜃2𝐴1(4𝑠1,𝑘)+𝜃1𝑇(4𝑠2)𝑘||𝑏0||𝛾𝜃2||𝑏+𝑘0||𝑇4𝑠1𝐴1(4𝑠1,𝑘)+𝜃1𝑇(4𝑠2)𝑘||𝑏0||𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠1||,(3.63) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.6. Suppose 𝑛=4𝑚, 𝑚>0 an integer and conditions (𝐻1) hold. If (𝐻13)𝑏0>𝛾+𝜃2,(3.64)(𝐻14)there is a positive integer 0<𝑠2𝑚 such that 𝑏2𝑠10,if𝑏𝑠=2𝑚,2𝑠10,𝑏2𝑠1+𝑖=0,𝑖=1,2,,4𝑚2𝑠,if0<𝑠<2𝑚,(3.65)(𝐻15)𝐴2(2𝑠1,𝑘)+𝜃1𝑇(2𝑠2)𝑘+𝛾+𝜃2𝐴1(2𝑠1,𝑘)+𝜃1𝑇(2𝑠2)𝑘𝑏0𝛾𝜃2+𝑘𝑏0𝑇2𝑠1𝐴1(2𝑠1,𝑘)+𝜃1𝑇(2𝑠2)𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏2𝑠1||,if𝜃1<𝑠2𝑚,1+𝛾+𝜃2𝐴1(1,𝑘)+𝜃1𝑏0𝛾𝜃2<||𝑏1||,if𝑠=1,(3.66) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.7. Suppose 𝑛=4𝑚+2,𝑚>0 an integer and conditions (𝐻1) hold. If (𝐻16)𝑏0>𝛾+𝜃2,(3.67)(𝐻17)there is a positive integer 0<𝑠2𝑚+1 such that 𝑏2𝑠10,if𝑏𝑠=2𝑚+1,2𝑠10,𝑏2𝑠1+𝑖=0,𝑖=1,2,,4𝑚2𝑠,if0<𝑠<2𝑚+1,(3.68)(𝐻18)𝐴2(2𝑠1,𝑘)+𝜃1𝑇(2𝑠2)𝑘+𝛾+𝜃2𝐴1(2𝑠1,𝑘)+𝜃1𝑇(2𝑠2)𝑘𝑏0𝛾𝜃2𝑘𝑏0𝑇2𝑠1𝐴1(2𝑠1,𝑘)+𝜃1𝑇(2𝑠2)𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏2𝑠1||,if𝜃1<𝑠2𝑚+1,1+𝛾+𝜃2𝐴1(1,𝑘)+𝜃1𝑏0𝛾𝜃2<||𝑏1||,if𝑠=1,(3.69) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.8. Suppose 𝑛=4𝑚, 𝑚>0 is an integer, and conditions (𝐻1),(𝐻13) hold. If(𝐻19)there is a positive integer 0<𝑠𝑚 such that 𝑏4𝑠20,𝑏4𝑠2+𝑖=0,𝑖=1,2,,4𝑚4𝑠+1,(3.70)(𝐻20)𝐴2(4𝑠2,𝑘)+𝜃1𝑇(4𝑠3)𝑘+𝛾+𝜃2𝐴1(4𝑠2,𝑘)+𝜃1𝑇(4𝑠3)𝑘𝑏0𝛾𝜃2+𝑘𝑏0𝑇4𝑠2𝐴1(4𝑠2,𝑘)+𝜃1𝑇(4𝑠3)𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠2||,if1<𝑠𝑚,𝛾+𝜃2𝐴1(2,𝑘)+𝜃1𝑇𝑘𝑏0𝛾𝜃2+𝑘𝑏0𝑇2𝐴1(2,𝑘)+𝜃1𝑇𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏2||,if𝑠=1,(3.71) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.9. Suppose 𝑛=4𝑚, 𝑚>1 an integer and conditions (𝐻1),(𝐻13) hold. If(𝐻21)there is a positive integer 1<𝑠𝑚 such that 𝑏4𝑠40,𝑏4𝑠4+𝑖=0,𝑖=1,2,,4𝑚4𝑠+3,(3.72)(𝐻22)𝐴2(4𝑠4,𝑘)+𝜃1𝑇(4𝑠5)𝑘+𝛾+𝜃2𝐴1(4𝑠4,𝑘)+𝜃1𝑇(4𝑠5)𝑘𝑏0𝛾𝜃2+𝑘𝑏0𝑇4𝑠4𝐴1(4𝑠4,𝑘)+𝜃1𝑇(4𝑠5)𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠4||,(3.73) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.10. Suppose 𝑛=4𝑚+2, 𝑚1 an integer and conditions (𝐻1),(𝐻16) hold. If(𝐻23)there is a positive integer 1𝑠𝑚 such that 𝑏4𝑠0,𝑏4𝑠+𝑖=0,𝑖=1,2,,4𝑚4𝑠+1,(3.74)(𝐻24)𝐴2(4𝑠,𝑘)+𝜃1𝑇(4𝑠1)𝑘+𝛾+𝜃2𝐴1(4𝑠,𝑘)+𝜃1𝑇(4𝑠1)𝑘𝑏0𝛾𝜃2𝑘𝑏0𝑇4𝑠𝐴1(4𝑠,𝑘)+𝜃1𝑇(4𝑠1)𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠||,(3.75) then (1.1) has at least one 𝑇-periodic solution.

Theorem 3.11. Suppose 𝑛=4𝑚+2, 𝑚1 is an integer, and conditions (𝐻1),(𝐻16) hold. If(𝐻25)there is a positive integer 1𝑠𝑚 such that 𝑏4𝑠20,𝑏4𝑠2+𝑖=0,𝑖=1,2,,4𝑚4𝑠+3,(3.76)(𝐻26)𝐴2(4𝑠2,𝑘)+𝜃1𝑇(4𝑠3)𝑘+𝛾+𝜃2𝐴1(4𝑠2,𝑘)+𝜃1𝑇(4𝑠3)𝑘𝑏0𝛾𝜃2𝑘𝑏0𝑇4𝑠2𝐴1(4𝑠2,𝑘)+𝜃1𝑇(4𝑠3)𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏4𝑠2||,if𝜃1<𝑠𝑚,1𝑇𝑘+𝛾+𝜃2𝐴1(2,𝑘)+𝜃1𝑇𝑘𝑏0𝛾𝜃2𝑘𝑏0𝑇2𝐴1(2,𝑘)+𝜃1𝑇𝑘𝑏0𝛾𝜃2(𝑘1)/𝑘<||𝑏2||,ifs=1,(3.77) then (1.1) has at least one 𝑇-periodic solution.

The proofs of Theorem 3.33.11 are similar to that of Theorem 3.1.

Example 3.12. Consider the following equation: 𝑥(5)𝑥(𝑡)+300(𝑡)3+1𝑥50(𝑡)3+1[]100𝑥(𝑡)3+1𝑥𝜋300(sin𝑡)𝑡103,=cos𝑡(3.78) where 𝑛=5,𝑘=3,𝑏4=𝑏3=0,𝑏2=300,𝑏1=1/50,𝑏0=1/100,𝑓(𝑡,𝑥)=1/300(sin𝑡)𝑥3,𝑝(𝑡)=cos𝑡,𝜏(𝑡)=𝜋/10. Thus, 𝑇=2𝜋,𝛾=1/300,𝐴1(2,𝑘)=|𝑏1|(2𝜋)3+|𝑏2|=1/50×(2𝜋)3+200. Obviously assumptions (H1)–(H3) hold and 𝜃1𝑇𝑘+𝛾+𝜃2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||𝛾𝜃2||𝑏+𝑘0||(2𝜋)2𝐴1(2,𝑘)+𝜃1𝑇𝑘||𝑏0||𝛾𝜃2(𝑘1)/𝑘<||𝑏2||.(3.79) By Theorem 3.1, we know that (3.78) has at least one 2𝜋-periodic solution.