About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2012 (2012), Article ID 173634, 18 pages
http://dx.doi.org/10.1155/2012/173634
Research Article

Direct Method for Resolution of Optimal Control Problem with Free Initial Condition

1Department of Mathematics, Faculty of Sciences, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
2Laboratoire de Conception et Conduite de Systèmes de Production (L2CSP), UMMTO Tizi-Ouzou, Algeria

Received 22 September 2011; Accepted 3 November 2011

Academic Editor: Sabri Arik

Copyright © 2012 Louadj Kahina and Aidene Mohamed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, and E. F. Mischenko, The Mathematical Theory of Optimal Processes, Interscience, New York, NY, USA, 1962.
  2. R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, USA, 1963.
  3. R. E. Bellman, I. Glicksberg, and O. A. Gross, “Some aspects of the mathematical theory of control processes,” Tech. Rep. R-313, Rand Corporation, Santa Monica, Calif, USA, 1958.
  4. R. Gabasov, F. M. Kirillova, and N. S. Pavlenok, “Optimization of dynamical systems by using dynamical controllers,” Automatica i Telemekh, vol. 5, pp. 8–28, 2004.
  5. E. Trélat, Contrôle optimal : Théorie et applications, Mathématiques Concêtes, Vuibert, Paris, France, 2005. View at Publisher · View at Google Scholar
  6. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, NY, USA, 1967.
  7. N. V. Balashevich, R. Gabasov, and F. M. Kirillova, “Numerical methods for program and positional optimization of linear control systems,” Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, vol. 40, no. 6, pp. 838–859, 2000.
  8. R. Gabasov and F. M. Kirillova, Linear Programming Methods, vol. 1, Byelorussian State University Publishing House, Minsk, Russia, 1977.
  9. R. Gabasov and F. M. Kirillova, Linear Programming Methods, vol. 2, Byelorussian State University Publishing House, Minsk, Russia, 1978.
  10. R. Gabasov and F. M. Kirillova, Linear Programming Methods, vol. 3, Byelorussian State University Publishing House, Minsk, Russia, 1980.
  11. M. Aiden, I. L. Vorob'ev, and B. Oukacha, “An algorithm for solving a linear optimal control problem with a minimax performance index,” Computational Mathematics and Mathematical Physics, vol. 45, no. 10, pp. 1691–1700, 2005.
  12. R. Gabasov, N. V. Balashevich, and F. M. Kirillova, “On the synthesis problem for optimal control systems,” SIAM Journal on Control and Optimization, vol. 39, no. 4, pp. 1008–1042, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. R. Gabasov and F. M. Kirillova, Constructive Methods of Optimization, part 2, University Press, Minsk, Russia, 1984.
  14. A. E. Bryson and H. O. Yu-Chi, Applied Optimal Control, Blaisdell, Toronto, Canada, 1969.
  15. H. Maurer, C. Büskens, J. H. R. Kim, and C. Y. Kaya, “Optimization methods for the verification of second order sufficient conditions for bang-bang controls,” Optimal Control Applications and Methods, vol. 26, no. 3, pp. 129–156, 2005. View at Publisher · View at Google Scholar
  16. L. Poggialini, “On local state optimality of bang-bang extremals in a free horizon Bolza problem,” Rendiconti del Seminario Matematico dell’Universitá e del Politecnico di Torino, vol. 63, no. 4, 2005.
  17. K. Louadj and M. Aidene, “Optimization of a problem of optimal control with free initial state,” Applied Mathematical Sciences, vol. 4, no. 5, pp. 201–216, 2010. View at Zentralblatt MATH
  18. R. Gabasov and F. M. Kirillova, “Adaptive method of solving linear programing problems,” Preprints Series, University of Karlsruhe, Institute for Satistics and Mathematics, 1994.
  19. R. Gabasov, F. M. Kirillova, and N. S. Pavlenok, “Optimal discrete-impulse control of linear systems,” Automation and Remote Control, vol. 69, no. 3, pp. 443–462, 2008. View at Publisher · View at Google Scholar