About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2012 (2012), Article ID 408637, 13 pages
http://dx.doi.org/10.1155/2012/408637
Research Article

Qualitative Analysis of Delayed SIR Epidemic Model with a Saturated Incidence Rate

Department of Mathematical Sciences, College of Science, UAE University, 17551 Al-Ain, UAE

Received 23 October 2012; Accepted 6 December 2012

Academic Editor: Ephraim Agyingi

Copyright © 2012 Fathalla A. Rihan and M-. Naim Anwar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Anderson and R. M. May, “Population biology of infectious diseases: part I,” Nature, vol. 280, no. 5721, pp. 361–367, 1979. View at Scopus
  2. R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, UK, 1998.
  3. V. Capasso, Mathematical Structure of Epidemic Systems, vol. 97 of Lecture Notes in Biomathematics, Springer, Berlin, Germany, 1993. View at Publisher · View at Google Scholar
  4. O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Disease, John Wiley & Sons, London, UK, 2000.
  5. H. W. Hethcote and D. W. Tudor, “Integral equation models for endemic infectious diseases,” Journal of Mathematical Biology, vol. 9, no. 1, pp. 37–47, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. H.-F. Huo and Z.-P. Ma, “Dynamics of a delayed epidemic model with non-monotonic incidence rate,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 2, pp. 459–468, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. C. C. McCluskey, “Complete global stability for an SIR epidemic model with delay—distributed or discrete,” Nonlinear Analysis. Real World Applications, vol. 11, no. 1, pp. 55–59, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. D. Xiao and S. Ruan, “Global analysis of an epidemic model with nonmonotone incidence rate,” Mathematical Biosciences, vol. 208, no. 2, pp. 419–429, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. R. Xu and Z. Ma, “Global stability of a SIR epidemic model with nonlinear incidence rate and time delay,” Nonlinear Analysis. Real World Applications, vol. 10, no. 5, pp. 3175–3189, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. R. Xu and Z. Ma, “Stability of a delayed SIRS epidemic model with a nonlinear incidence rate,” Chaos, Solitons & Fractals, vol. 41, no. 5, pp. 2319–2325, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. W. O. Kermack and A. McKendrick, “Contributions to the mathematical theory epidemics,” Proceedings of the Royal Society A, vol. 115, pp. 700–721, 1927.
  12. F. Berezovsky, G. Karev, B. Song, and C. Castillo-Chavez, “A simple epidemic model with surprising dynamics,” Mathematical Biosciences and Engineering, vol. 2, no. 1, pp. 133–152, 2005. View at Zentralblatt MATH
  13. L. Cai, S. Guo, X. Li, and M. Ghosh, “Global dynamics of a dengue epidemic mathematical model,” Chaos, Solitons and Fractals, vol. 42, no. 4, pp. 2297–2304, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. A. d'Onofrio, P. Manfredi, and E. Salinelli, “Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases,” Theoretical Population Biology, vol. 71, no. 3, pp. 301–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. d'Onofrio, P. Manfredi, and E. Salinelli, “Bifurcation thresholds in an SIR model with information-dependent vaccination,” Mathematical Modelling of Natural Phenomena, vol. 2, no. 1, pp. 26–43, 2007. View at Publisher · View at Google Scholar
  16. L. Esteva and M. Matias, “A model for vector transmitted diseases with saturation incidence,” Journal of Biological Systems, vol. 9, no. 4, pp. 235–245, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Greenhalgh, “Some results for an SEIR epidemic model with density dependence in the death rate,” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 9, no. 2, pp. 67–106, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. S. Hsu and A. Zee, “Global spread of infectious diseases,” Journal of Biological Systems, vol. 12, pp. 289–300, 2004.
  19. F. A. Rihan, M.-N. Anwar, M. Sheek-Hussein, and S. Denic, “SIR model of swine influenza epidemic in Abu Dhabi: Estimation of vaccination requirement,” Journal of Public Health Frontier, vol. 1, no. 4, 2012.
  20. S. Ruan and W. Wang, “Dynamical behavior of an epidemic model with a nonlinear incidence rate,” Journal of Differential Equations, vol. 188, no. 1, pp. 135–163, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. M. Safan and F. A. Rihan, “Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation,” Mathematics and Computers in Simulation. In press.
  22. N. Yi, Z. Zhao, and Q. Zhang, “Bifurcations of an SEIQS epidemic model,” International Journal of Information & Systems Sciences, vol. 5, no. 3-4, pp. 296–310, 2009.
  23. H. W. Hethcote and P. van den Driessche, “An SIS epidemic model with variable population size and a delay,” Journal of Mathematical Biology, vol. 34, no. 2, pp. 177–194, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. E. Beretta, T. Hara, W. Ma, and Y. Takeuchi, “Global asymptotic stability of an SIR epidemic model with distributed time delay,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 47, pp. 4107–4115, 2001.
  25. X. Song and S. Cheng, “A delay-differential equation model of HIV infection of CD4+ T-cells,” Journal of the Korean Mathematical Society, vol. 42, no. 5, pp. 1071–1086, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. N. Guglielmi and E. Hairer, “Implementing Radau IIA methods for stiff delay differential equations,” Journal of Computational Mathematics, vol. 67, no. 1, pp. 1–12, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. Y. Kuang and H. I. Freedman, “Uniqueness of limit cycles in Gause-type models of predator-prey systems,” Mathematical Biosciences, vol. 88, no. 1, pp. 67–84, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. Y. Takeuchi, W. Ma, and E. Beretta, “Global asymptotic properties of a delay SIR epidemic model with finite incubation times,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 42, no. 6, pp. 931–947, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  29. K. Engelborghs, T. Luzyanina, and G. Samaey, “DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations,” Tech. Rep. TW-330, Department of Computer Science, K.U.Leuven, Leuven, Belgium, 2001.
  30. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, Springer, New York, NY, USA, 1993.
  31. F. A. Rihan, E. H. Doha, M. I. Hassan, and N. M. Kamel, “Numerical treatments for Volterra delay integro-differential equations,” Computational Methods in Applied Mathematics, vol. 9, no. 3, pp. 292–308, 2009. View at Zentralblatt MATH