About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2012 (2012), Article ID 472030, 14 pages
http://dx.doi.org/10.1155/2012/472030
Research Article

Solving the Fractional Rosenau-Hyman Equation via Variational Iteration Method and Homotopy Perturbation Method

1Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Medan UNIMED 20221, Medan, Sumatera Utara, Indonesia
2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor, Malaysia

Received 31 May 2012; Accepted 8 November 2012

Academic Editor: Shaher Momani

Copyright © 2012 R. Yulita Molliq and M. S. M. Noorani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. He, “Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics,” International Journal of Turbo and Jet Engines, vol. 14, no. 1, pp. 23–28, 1997. View at Scopus
  2. J. H. He, “Some applications of nonlinear fractional differential equations and their approximations,” Bulletin of Science, Technology & Society, vol. 15, no. 2, pp. 86–90, 1999.
  3. J. H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  5. K. Al-Khaled and S. Momani, “An approximate solution for a fractional diffusion-wave equation using the decomposition method,” Applied Mathematics and Computation, vol. 165, no. 2, pp. 473–483, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 4, no. 2, pp. 153–192, 2001. View at Zentralblatt MATH
  7. A. Hanyga, “Multidimensional solutions of time-fractional diffusion-wave equations,” Proceedings of the Royal Society of London, Series A, vol. 458, no. 2020, pp. 933–957, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. F. Huang and F. Liu, “The time fractional diffusion equation and the advection-dispersion equation,” The Australian & New Zealand Industrial and Applied Mathematics Journal, vol. 46, no. 3, pp. 317–330, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. F. Huang and F. Liu, “The fundamental solution of the space-time fractional advection-dispersion equation,” Journal of Applied Mathematics & Computing, vol. 18, no. 1-2, pp. 339–350, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. S. Momani, “An explicit and numerical solutions of the fractional KdV equation,” Mathematics and Computers in Simulation, vol. 70, no. 2, pp. 110–118, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. L. Debnath and D. D. Bhatta, “Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics,” Fractional Calculus & Applied Analysis, vol. 7, no. 1, pp. 21–36, 2004. View at Zentralblatt MATH
  12. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar
  14. J. H. He, “Periodic solutions and bifurcations of delay-differential equations,” Physics Letters A, vol. 347, no. 4–6, pp. 228–230, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695–700, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. J. H. He, “Limit cycle and bifurcation of nonlinear problems,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 827–833, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. J. H. He, Non-perturbative methods for strongly nonlinear problems [Dissertation], de-Verlag im Internet GmbH, Berlin, Germany, 2006.
  18. J. H. He, “A new approach to nonlinear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 230–235, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  19. J. H. He, “Variational iteration method for delay differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 235–236, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. M. Tatari and M. Dehghan, “On the convergence of He's variational iteration method,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 121–128, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. Z. Odibat and S. Momani, “Numerical methods for nonlinear partial differential equations of fractional order,” Applied Mathematical Modelling, vol. 32, no. 1, pp. 28–39, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  22. R. Yulita Molliq, M. S. M. Noorani, and I. Hashim, “Variational iteration method for fractional heat- and wave-like equations,” Nonlinear Analysis: Real World Applications, vol. 10, no. 3, pp. 1854–1869, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. R. Yulita Molliq, M. S. M. Noorani, I. Hashim, and R. R. Ahmad, “Approximate solutions of fractional Zakharov-Kuznetsov equations by VIM,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 103–108, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. C. Chun, “Variational iteration method for a reliable treatment of heat equations with ill-defined initial data,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 4, pp. 435–440, 2008. View at Scopus
  25. M. G. Porshokouhi and B. Ghanbari, “Application of He's variational iteration method for solution of the family of Kuramoto-Sivashinsky equations,” Journal of King Saud University - Science, vol. 23, no. 4, pp. 407–411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. T. Mohyud-Din and A. Yildirim, “An algorithm for solving the fractional vibration equation,” Computational Mathematics and Modeling, vol. 23, no. 2, pp. 228–237, 2012. View at Publisher · View at Google Scholar
  27. A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla, and D. Hammad, “A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains,” Applied Mathematics and Computation, vol. 218, no. 17, pp. 8329–8340, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. P. Rosenau and J. M. Hyman, “Compactons: solitons with finite wavelength,” Physical Review Letters, vol. 70, no. 5, pp. 564–567, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  29. R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus, A. Carpinteri and F. Mainardi, Eds., Springer, New York, NY, USA, 1997.
  30. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, no. 5, pp. 529–539, 1967. View at Publisher · View at Google Scholar
  31. M. Inokuti, H. Sekine, and T. Mura, “General use of the Lagrange multiplier in nonlinear mathematical physics,” in Variational Method in the Mechanics of Solids, S. Nemat Nasser, Ed., pp. 156–162, Pergamon Press, New York, NY, USA, 1978.
  32. B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, New York, NY, USA, 1972.
  33. P. A. Clarkson, E. L. Mansfield, and T. J. Priestley, “Symmetries of a class of nonlinear third-order partial differential equations,” Mathematical and Computer Modelling, vol. 25, no. 8-9, pp. 195–212, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH