About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2013 (2013), Article ID 704547, 11 pages
http://dx.doi.org/10.1155/2013/704547
Research Article

Analysis of Caputo Impulsive Fractional Order Differential Equations with Applications

1School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001, India
2Dipartimento di Matematica, Universitá di Bologna, Pizza di Porta S. Donato 5, 40126 Bologna, Italy

Received 6 May 2012; Accepted 21 November 2012

Academic Editor: Nikolai Leonenko

Copyright © 2013 Lakshman Mahto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. D. Milman and A. D. Myškis, “On the stability of motion in the presence of impulses,” Siberial Mathematical Journal, vol. 1, pp. 233–237, 1960.
  2. A. M. Samoilenko and N. A. Perestyuk, Differential Equations With Impulses, Viska Scola, Kiev, Ukraine, 1987.
  3. V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA, 1989.
  4. D. D. Bainov and P. S. Simeonov, Systems with Impulsive Effects, Horwood, Chichister, UK, 1989.
  5. D. D. Bainov and P. S. Simeonov, Impulsive DiffErential Equations: Periodic Solutions and Its Applications, Longman Scientific and Technical Group, Harlow, UK, 1993.
  6. D. Bainov and V. Covachev, Impulsive Differential Equations with a Small Parameter, vol. 24 of Series on Advances in Mathematics for Applied Sciences, World Scientific, River Edge, NJ, USA, 1994.
  7. M. Benchohra, J. Henderson, and S. K. Ntonyas, Impulsive Diffrential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, NY, USA, 2006.
  8. J. Hale, Theory of Functional Differential Equations, Springer, New York, NY, USA, 2nd edition, 1977.
  9. F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics, vol. 378 of CISM Courses and Lectures, pp. 291–348, Springer, Vienna, Austria, 1997. View at Zentralblatt MATH
  10. K. Diethelm, The Analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar
  11. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies, 2006.
  12. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993.
  13. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  14. J. Sabatier, O. P. Agrawal, and J. A. Tenreiro Machado, Advances in Fractional Calculus, Springer, Dordrecht, The Netherlands, 2007. View at Publisher · View at Google Scholar
  15. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993.
  16. S. Abbas, “Existence of solutions to fractional order ordinary and delay differential equations and applications,” Electronic Journal of Differential Equations, vol. 2011, no. 9, pp. 1–11, 2011. View at Scopus
  17. S. Abbas, M. Banerjee, and S. Momani, “Dynamical analysis of fractional-order modified logistic model,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1098–1104, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. S. B. Hadid, “Local and global existence theorems on differential equations of non-integer order,” Journal of Fractional Calculus, vol. 7, pp. 101–105, 1995. View at Zentralblatt MATH
  20. R. W. Ibrahim and S. Momani, “On the existence and uniqueness of solutions of a class of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2677–2682, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. R. P. Agarwal, M. Benchohra, and B. A. Slimani, “Existence results for differential equations with fractional order and impulses,” Georgian Academy of Sciences. A. Razmadze Mathematical Institute. Memoirs on Differential Equations and Mathematical Physics, vol. 44, pp. 1–21, 2008. View at Zentralblatt MATH
  23. M. Benchohra and B. A. Slimani, “Existence and uniqueness of solutions to impulsive fractional differential equations,” Electronic Journal of Differential Equations, vol. 2009, no. 10, pp. 1–11, 2009. View at Scopus
  24. M. Fečkan, Y. Zhou, and J. Wang, “On the concept and existence of solution for impulsive fractional differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 7, pp. 3050–3060, 2012. View at Publisher · View at Google Scholar
  25. D. Xu, Y. Hueng, and L. Ling, “Existence of positive solutions of an Impulsive Delay Fishing model,” Bulletin of Mathematical Analysis and Applications, vol. 3, no. 2, pp. 89–94, 2011.
  26. C. Giannantoni, “The problem of the initial conditions and their physical meaning in linear differential equations of fractional order,” Applied Mathematics and Computation, vol. 141, no. 1, pp. 87–102, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. N. Heymans and I. Podlubny, “Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives,” Rheologica Acta, vol. 45, no. 5, pp. 765–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002, Dedicated to the 60th anniversary of Prof. Francesco Mainard. View at Zentralblatt MATH
  29. E. Zeidler, Non-Linear Functional Analysis and Its Application: Fixed Point-Theorems, vol. 1, Springer, New York, NY, USA, 1986.
  30. B. N. Sadovskiĭ, “On a fixed point principle,” Functional Analysis and Its Applications, vol. 1, no. 2, pp. 74–76, 1967.
  31. H. Ye, J. Gao, and Y. Ding, “A generalized Gronwall inequality and its application to a fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 328, no. 2, pp. 1075–1081, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH