About this Journal Submit a Manuscript Table of Contents
International Journal of Differential Equations
Volume 2013 (2013), Article ID 865464, 8 pages
http://dx.doi.org/10.1155/2013/865464
Research Article

An Improvement of the Differential Transformation Method and Its Application for Boundary Layer Flow of a Nanofluid

1Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
2Department of Mathematics, Faculty of Science, Ain Shams University, Egypt

Received 4 April 2013; Accepted 22 April 2013

Academic Editor: Jürgen Geiser

Copyright © 2013 Abdelhalim Ebaid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in The Proceedings of the ASME International Mechanical Engineering Congress and Exposition, ASME, FED 231/MD 66, pp. 99–105, San Francisco, Calif, USA, 1995.
  2. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alterlation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles),” Netsu Bussei, vol. 7, no. 4, pp. 227–233, 1993.
  3. J. Buongiorno and W. Hu, “Nanofluid coolants for advanced nuclear power plants,” in Proceedings of ICAPP ’05, Paper no. 5705, Seoul, Republic of Korea, May 2005.
  4. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Applied Physics Letters, vol. 79, no. 14, pp. 2252–2254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, pp. 3187–3196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology, Wiley-Interscience, Hoboken, NJ, USA, 2007.
  7. J. Buongiorno, “Convective transport in nanofluids,” Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Nield and A. V. Kuznetsov, “The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5792–5795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Daungthongsuk and S. Wongwises, “A critical review of convective heat transfer of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 11, no. 5, pp. 797–817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 50, no. 9-10, pp. 2002–2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Wang and X. Wei, “Heat conduction in nanofluids,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2211–2215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” International Journal of Heat and Fluid Flow, vol. 29, no. 5, pp. 1326–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” International Journal of Thermal Sciences, vol. 49, no. 2, pp. 243–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. V. Kuznetsov and D. A. Nield, “Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid,” Transport in Porous Media, vol. 83, no. 2, pp. 425–436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. E. H. Aly and A. Ebaid, “New exact solutions for boundary-layer flow of a nanofluid past a stretching sheet,” Journal of Computational and Theoretical Nanoscience. In press.
  17. P. Cheng and W. J. Minkowycz, “Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike,” Journal of Geophysical Research, vol. 82, no. 14, pp. 2040–2044, 1977. View at Scopus
  18. W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 53, no. 11-12, pp. 2477–2483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. P. Boyd, “Padé-approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain,” Computers in Physics, vol. 11, no. 3, pp. 299–303, 1997. View at Publisher · View at Google Scholar
  20. A. M. Wazwaz, “The modified decomposition method and Padé approximants for solving the Thomas-Fermi equation,” Applied Mathematics and Computation, vol. 105, no. 1, pp. 11–19, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. A. M. Wazwaz, “The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 737–744, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  22. A. M. Wazwaz, “Padé approximants and Adomian decomposition method for solving the Flierl-Petviashivili equation and its variants,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1812–1818, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. A. M. Wazwaz, “The variational iteration method for solving two forms of Blasius equation on a half-infinite domain,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 485–491, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. S. A. Kechil and I. Hashim, “Non-perturbative solution of free-convective boundary-layer equation by Adomian decomposition method,” Physics Letters A, vol. 363, no. 1-2, pp. 110–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. A. Kechil and I. Hashim, “Series solution of flow over nonlinearly stretching sheet with chemical reaction and magnetic field,” Physics Letters A, vol. 372, no. 13, pp. 2258–2263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Alizadeh, K. Sedighi, M. Farhadi, and H. R. Ebrahimi-Kebria, “Analytical approximate solution of the cooling problem by Adomian decomposition method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 462–472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Hayat, Q. Hussain, and T. Javed, “The modified decomposition method and Padé approximants for the MHD flow over a non-linear stretching sheet,” Nonlinear Analysis: Real World Applications, vol. 10, no. 2, pp. 966–973, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  28. S. Abbasbandy and T. Hayat, “Solution of the MHD Falkner-Skan flow by Hankel-Padé method,” Physics Letters A, vol. 373, no. 7, pp. 731–734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Rashidi and E. Erfani, “A novel analytical solution of the thermal boundary-layer over a flat plate with a convective surface boundary condition using DTM-Padé,” in Proceedings of the International Conference on Signal Processing Systems (ICSPS '09), pp. 905–909, Singapore, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Rashidi and S. A. M. Pour, “A novel analytical solution of steady flow over a rotating disk in porous medium with heat transfer by DTM-Padé,” African Journal of Mathematics and Computer Science Research, vol. 3, no. 6, pp. 93–100, 2010.
  31. M. M. Rashidi and S. A. M. Pour, “Explicit solution of axisymmetric stagnation flow towards a shrinking sheet by DTM-Padé,” Applied Mathematical Sciences, vol. 4, no. 53–56, pp. 2617–2632, 2010. View at MathSciNet · View at Scopus
  32. M. M. Rashidi and M. Keimanesh, “Using differential transform method and Padé approximant for solving mhd flow in a laminar liquid film from a horizontal stretching surface,” Mathematical Problems in Engineering, vol. 2010, Article ID 491319, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. K. Zhou, Differential Transformation and Its Applications for Electrical circuIts, Huazhong University Press, Wuhan, China, 1986.
  34. S. H. Ho and C. K. Chen, “Analysis of general elastically end restrained non-uniform beams using differential transform,” Applied Mathematical Modelling, vol. 22, no. 4-5, pp. 219–234, 1998. View at Scopus
  35. C. K. Chen and S. H. Ho, “Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform,” International Journal of Mechanical Sciences, vol. 41, no. 11, pp. 1339–1356, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. C. K. Chen and S. H. Ho, “Solving partial differential equations by two-dimensional differential transform method,” Applied Mathematics and Computation, vol. 106, no. 2-3, pp. 171–179, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  37. M. J. Jang, C. L. Chen, and Y. C. Liy, “On solving the initial-value problems using the differential transformation method,” Applied Mathematics and Computation, vol. 115, no. 2-3, pp. 145–160, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  38. M. J. Jang, C. L. Chen, and Y. C. Liu, “Two-dimensional differential transform for partial differential equations,” Applied Mathematics and Computation, vol. 121, no. 2-3, pp. 261–270, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  39. M. Köksal and S. Herdem, “Analysis of nonlinear circuits by using differential Taylor transform,” Computers and Electrical Engineering, vol. 28, no. 6, pp. 513–525, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Ayaz, “Solutions of the system of differential equations by differential transform method,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 547–567, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  41. A. Arikoglu and I. Ozkol, “Solution of boundary value problems for integro-differential equations by using differential transform method,” Applied Mathematics and Computation, vol. 168, no. 2, pp. 1145–1158, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  42. S. H. Chang and I. L. Chang, “A new algorithm for calculating one-dimensional differential transform of nonlinear functions,” Applied Mathematics and Computation, vol. 195, no. 2, pp. 799–808, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  43. A. S. V. R. Kanth and K. Aruna, “Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations,” Chaos, Solitons and Fractals, vol. 41, no. 5, pp. 2277–2281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. S. V. R. Kanth and K. Aruna, “Differential transform method for solving the linear and nonlinear Klein-Gordon equation,” Computer Physics Communications, vol. 180, no. 5, pp. 708–711, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  45. A. Ebaid, “Approximate periodic solutions for the non-linear relativistic harmonic oscillator via differential transformation method,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1921–1927, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  46. L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 4, pp. 645–647, 1970. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Ebaid and M. D. Aljoufi, “New theoretical and numerical results for the boundary-layer flow of a nanofluid past a stretching sheet,” Advanced Studies in Theoretical Physics. In press.