About this Journal Submit a Manuscript Table of Contents
International Journal of Digital Multimedia Broadcasting
Volume 2010 (2010), Article ID 597105, 13 pages
http://dx.doi.org/10.1155/2010/597105
Research Article

A Cross-Layer Location-Based Approach for Mobile-Controlled Connectivity

1Dipartimento per le Comunicazioni, I.S.C.T.I., Ministero dello Sviluppo Economico, Viale America 201, 00144 Rome, Italy
2Department of Applied Electronics, University of Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
3Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

Received 2 July 2010; Revised 5 November 2010; Accepted 3 December 2010

Academic Editor: Stefania Colonnese

Copyright © 2010 T. Inzerilli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Balasubramaniam and J. Indulska, “Vertical handover supporting pervasive computing in future wireless networks,” Computer Communications, vol. 27, no. 8, pp. 708–719, 2004. View at Publisher · View at Google Scholar
  2. G. P. Pollini, “Trends in handover design,” IEEE Communications Magazine, vol. 34, no. 3, pp. 82–90, 1996. View at Scopus
  3. J. McNair and F. Zhu, “Vertical handoffs in fourth-generation multinetwork environments,” IEEE Wireless Communications, vol. 11, no. 3, pp. 8–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Stemm and R. H. Katz, “Vertical handoffs in wireless overlay networks,” Mobile Networks and Applications, vol. 3, no. 4, pp. 335–350, 1998. View at Scopus
  5. M. Kassar, B. Kervella, and G. Pujolle, “An overview of vertical handover decision strategies in heterogeneous wireless networks,” Computer Communications, vol. 31, no. 10, pp. 2607–2620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Cho, J. Park, W. Ko, K. Lim, and W. Kim, “A study on the MCHO method in hard handover and Soft handover between WLAN and CDMA,” in Proceedings of the International Conference on Consumer Electronics (ICCE '05), pp. 391–392, January 2005.
  7. K. Ayyappan and P. Dananjayan, “RSS measurement for vertical handoff in heterogeneous network,” Journal of Theoretical and Applied Information Technology, vol. 4, no. 10, pp. 989–994, 2008.
  8. T. Inzerilli and A. M. Vegni, “A reactive vertical handover approach for WIFI-UMTS dual-mode terminals,” in Proceedings of the International Symposium on Consumer Electronics (ISCE '08), pp. 1–4, Vilamoura, Portugal, April 2008. View at Publisher · View at Google Scholar
  9. S. Xie and M. Wu, “Adaptive variable threshold vertical handoff algorithm,” in Proceedings of the IEEE International Conference Neural Networks and Signal Processing (ICNNSP '08), pp. 366–369, Zhenjiang, China, June 2008. View at Publisher · View at Google Scholar
  10. K. Yang, I. Gondal, B. Qiu, and L. S. Dooley, “Combined SINR based vertical handoff algorithm for next generation heterogeneous wireless networks,” in Proceedings of the 50th Annual IEEE Global Telecommunications Conference (GLOBECOM '07), pp. 4483–4487, Washinton, DC, USA, November 2007. View at Publisher · View at Google Scholar
  11. A. M. Vegni, G. Tamea, T. Inzerilli, and R. Cusani, “A combined vertical handover decision metric for QoS enhancement in next generation networks,” in Proceedings of the 5th IEEE International Conference on Wireless and Mobile Computing Networking and Communication (WiMob '09), pp. 233–238, Marrakech, Morocco, October 2009. View at Publisher · View at Google Scholar
  12. A. M. Vegni, M. Carli, A. Neri, and G. Ragosa, “QoS-based vertical handover in heterogeneous networks,” in Proceedings of the 10th International Wireless Personal Multimedia Communications (WPMC 2007), pp. 1–4, Jaipur, India, December 2007.
  13. V. Jesus, S. Sargento, D. Corujo, N. Sénica, M. Almeida, and R. L. Aguiar, “Mobility with QoS support for multi-interface terminals: combined user and network approach,” in Proceedings of the 12th IEEE International Symposium on Computers and Communications (ISCC '07), pp. 325–332, July 2007. View at Publisher · View at Google Scholar
  14. A. M. Vegni and F. Esposito, “A speed-based vertical handover algorithm for VANET,” in Proceedings of the of 7th International Workshop on Intelligent Transportation (WIT '10), Hamburg, Germany, March 2010.
  15. F. Esposito, A. M. Vegni, I. Matta, and A. Neri, “On modeling speed-based vertical handovers in vehicular networks “Dad, slow down, I am watching the movie”,” in Proceedings of the Annual IEEE Global Telecommunications Conference (GLOBECOM '10), Miami, Fla, USA, December 2010.
  16. S. S. Wang, M. Green, and M. Malkawi, “Adaptive handover method using mobile location information,” in Proceedings of the IEEE Emerging Technology Symposium on Broadband Communications for the Internet Era Symposium, pp. 97–101, Richardson, Tex, USA, September 2001.
  17. D. B. Lin, R. T. Juang, H. P. Lin, and C. Y. Ke, “Mobile location estimation based on differences of signal attenuations for GSM systems,” in Proceedings of the IEEE International Antennas and Propagation Symposium, vol. 1, pp. 77–80, June 2003.
  18. T. Inzerilli, A. M. Vegni, A. Neri, and R. Cusani, “A location-based vertical handover algorithm for limitation of the ping-pong effect,” in Proceedings of the 4th IEEE International Conference on Wireless and Mobile Computing, Networking and Communication (WiMob '08), pp. 385–389, Avignon, France, October 2008. View at Publisher · View at Google Scholar
  19. A. M. Vegni and F. Esposito, “Location aware mobility assisted services for heterogeneous wireless technologies,” in Proceedings of the IEEE MTT-S International Microwave Workshop Series on Wireless Sensing, Local Positioning and RFID (IMWS '09), Cavtat, Croatia, September 2009. View at Publisher · View at Google Scholar
  20. W. I. Kim, B. J. Lee, J. S. Song, Y. S. Shin, and Y. J. Kim, “Ping-pong avoidance algorithm for vertical handover in wireless overlay networks,” in Proceedings of the 66th IEEE Vehicular Technology Conference (VTC '07), vol. 3, pp. 1509–1512, September-October 2007. View at Publisher · View at Google Scholar
  21. X. Yan, Y. A. Şekercioǧlu, and N. Mani, “A method for minimizing unnecessary handovers in heterogeneous wireless networks,” in Proceedings of the 9th IEEE International Symposium on Wireless, Mobile and Multimedia Networks (WoWMoM '08), pp. 1–5, June 2008. View at Publisher · View at Google Scholar
  22. N. Zhang and J. M. Holtzman, “Analysis of handoff algorithms using both absolute and relative measurements,” IEEE Transactions on Vehicular Technology, vol. 45, no. 1, pp. 174–179, 1996.
  23. Y. S. Chen, C. H. Cheng, C. S. Hsu, and G. M. Chiu, “Network mobility protocol for vehicular ad hoc networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '09), Budapest, Hungary, April 2009. View at Publisher · View at Google Scholar
  24. M. R. Kibria, A. Jamalipour, and V. Mirchandani, “A location aware three-step vertical handoff scheme for 4G/B3G networks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '05), vol. 5, pp. 2752–2756, St. Louis, Mo, USA, November-December 2005. View at Publisher · View at Google Scholar
  25. X. Yan, Y. A. Şekercioǧlu, and S. Narayanan, “A survey of vertical handover decision algorithms in Fourth Generation heterogeneous wireless networks,” Computer Networks, vol. 54, no. 11, pp. 1848–1863, 2010. View at Publisher · View at Google Scholar
  26. A. Hasswa, N. Nasser, and H. Hassanein, “Generic vertical handoff decision function for heterogeneous wireless networks,” in Proceedings of the 2nd International Conference on Wirelessand Optical Communications Networks (WOCN '05), pp. 239–243, March 2005.
  27. “IEEE 802.21 Media Independent Handover Services—Media Independent Handover,” Draft Text for Media Independent Handover Specification.
  28. J. Laiho, A. Wacker, and T. Novosad, Radio Network Planning and Optimisation for UMTS, chapter 3, Wiley, New York, NY, USA, 2nd edition, 2005.
  29. “IEEE Standard for Information technology Telecommunications and information exchange between systems. Local and metropolitan area networks. Specific requirements,” Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
  30. J. Laiho, A. Wacker, and T. Novosad, Radio Network Planning and Optimisation for UMTS, chapter 6, Wiley, New York, NY, USA, 2nd edition, 2005.
  31. J. Laiho, A. Wacker, and T. Novosad, Radio Network Planning and Optimisation for UMTS, chapter 3, Wiley, New York, NY, USA, 2nd edition, 2005.
  32. Y. Okumura, et al., “Field strength and its variability in VHF and UHF land-mobile service,” Review of the Electrical Communication Laboratory, vol. 16, no. 9-10, pp. 825–873, 1968.