About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 145702, 9 pages
http://dx.doi.org/10.1155/2012/145702
Research Article

MDS-Based Wormhole Detection Using Local Topology in Wireless Sensor Networks

College of Computer Science, National University of Defense Technology, Hunan 410073, China

Received 28 September 2012; Accepted 27 November 2012

Academic Editor: Shuai Li

Copyright © 2012 Xiaopei Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Sanzgiri, B. Dahill, B. Levine, and F. Belding-Royer, “A secure routing protocol for Ad Hoc networks,” in Proceedings of the IEEE International Conference on Network Protocols (IEEE ICNP '02), 2002.
  2. X. Mao, X. Miao, Y. He, X.-Y. Li, and Y. Liu, “CitySee: urban CO2 monitoring with sensors,” in Proceedings of the 32nd IEEE International Conference on Computer Communications (IEEE INFOCOM '12), 2012.
  3. W. Wang, B. Bhargava, Y. Lu, and X. Wu, “Defending against wormhole attacks in mobile ad hoc networks,” Wireless Communications and Mobile Computing, vol. 6, no. 4, pp. 483–503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Capkun, L. Buttyan, and J. P. Hubaux, “Sector: secure tracking of node encounters in multi-hop wireless networks,” in Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor Networks (ACM SASN '03), 2003.
  5. L. Hu and D. Evans, “Using directional antennas to prevent wormhole attacks,” in Proceedings of the Network and Distributed System Security Symposium Conference (NDSS '04), 2004.
  6. Y. C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: a defense against wormhole attacks in wireless networks,” in Proceedings of the 22nd Annual Joint Conference on the IEEE Computer and Communications Societies (IEEE INFOCOM '03), pp. 1976–1986, April 2003. View at Scopus
  7. I. Khalil, S. Bagchi, and N. B. Shroff, “LITE WORP: a lightweight countermeasure for the wormhole attack in multihop wireless networks (DSN '05),” in Proceedings of the International Conference on Dependable Systems and Networks, pp. 612–621, July 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Khalil, S. Bagchi, and N. B. Shroff, “MOBIWORP: mitigation of the wormhole attack in mobile multihop wireless networks,” in Proceedings of the Securecomm and Workshops (SECURECOMM '06), September 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Buttyan, L. Dora, and I. Vajda, “Statistical wormhole detection in sensor networks,” in Proceedings of the Security and Privacy in Ad-hoc and Sensor Networks (IEEE ESAS '05), vol. 3813, pp. 128–141, 2005.
  10. N. Song, L. Qian, and X. Li, “Wormhole attacks detection in wireless ad hoc networks: a statistical analysis approach,” in Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS '05), April 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and L. W. Chang, “Preventing wormhole attacks on wireless ad hoc networks: a graph theoretic approach,” in Proceedings of the IEEE Wireless Communications and Networking Conference, Broadband Wirelss for the Masses—Ready for Take-off (WCNC '05), pp. 1193–1199, March 2005. View at Scopus
  12. W. Wang and B. Bhargava, “Visualization of wormholes in sensor networks,” in Proceedings of the ACM Workshop on Wireless Security (WiSe '04), pp. 51–60, October 2004. View at Scopus
  13. R. Maheshwari, J. Gao, and S. R. Das, “Detecting wormhole attacks in wireless networks using connectivity information,” in Proceedings of the 26th IEEE International Conference on Computer Communications (IEEE INFOCOM '07), pp. 107–115, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Dong, M. Li, Y. Liu, and X. Liao, “WormCircle: connectivity-based wormhole detection in wireless ad hoc and sensor networks,” in Proceedings of the 15th International Conference on Parallel and Distributed Systems (ICPADS '09), pp. 72–79, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Dong, M. Li, Y. Liu, X. Y. Li, and X. Liao, “Topological detection on wormholes in wireless ad hoc and sensor networks,” in Proceedings of the 17th IEEE International Conference on Network Protocols (ICNP '09), pp. 314–323, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Ban, R. Sarkar, and J. Gao, “Local connectivity tests to identify wormholes in wireless networks,” Proceedings of the 12th ACM International Symposium on Mobile Ad Hoc Networking and Computing (ACM MobiHoc '11), 2011.
  17. Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from mere connectivity,” in Proceedings of the PROCEEDINGS OF The Fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '03), pp. 201–212, June 2003. View at Scopus
  18. X. Ji and H. Zha, “Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling,” in Proceedings of the IEEE Computer and Communications Societies (IEEE INFOCOM '04), pp. 2652–2661, March 2004. View at Scopus
  19. S. Li and F. Qin, “A dynamic neural network approach for solving nonlinear inequalities defined on a graph and Its application to distributed, routing-free, range-free localization of WSNs,” Neurocomputing. In press.
  20. S. Li, Y. Lou, and B. Liu, “Bluetooth aided mobile phone localization: a nonlinear neural circuit approach,” Transactions on Embedded Computing Systems. In press.
  21. S. Li, B. Liu, B. Chen, and Y. Luo, “Neural network based mobile phone localization using bluetooth connectivity,” Neural Computing and Applications. In press.
  22. S. Li, Z. Wang, and Y. Li, “Using laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks,” Neural Processing Letters. In press.
  23. D. Eppstein, “Arboricity and bipartite subgraph listing algorithms,” Information Processing Letters, vol. 51, no. 4, pp. 207–211, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Location-based compromise-tolerant security mechanisms for wireless sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 2, pp. 247–260, 2006. View at Publisher · View at Google Scholar · View at Scopus