About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 230198, 13 pages
http://dx.doi.org/10.1155/2012/230198
Research Article

Data Gathering in Opportunistic Wireless Sensor Networks

1Department of Software Engineering, Xiamen University, Xiamen 361005, Fujian, China
2Department of Computer Science, Xiamen University, Xiamen 361005, Fujian, China

Received 23 July 2012; Revised 24 September 2012; Accepted 2 October 2012

Academic Editor: Ruchuan Wang

Copyright © 2012 Yongxuan Lai and Ziyu Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Chen, C. H. Yu, C. L. Tseng, H. H. Chu, and C. F. Chou, “A content-centric framework for effective data dissemination in opportunistic networks,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 5, pp. 761–772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. P. Xiong, L. M. Sun, J. W. Niu, and Y. Liu, “Opportunistic networks,” Journal of Software, vol. 20, no. 1, pp. 124–137, 2009 (Chinese). View at Publisher · View at Google Scholar · View at Scopus
  3. X. Wu and G. Chen, “Dual-Sink: Using mobile and static sinks for lifetime improvement in wireless sensor networks,” in Proceedings of the 16th International Conference on Computer Communications and Networks (ICCCN '07), pp. 1297–1302, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Xu, J. Luo, and Q. Zhang, “Delay tolerant event collection in sensor networks with mobile sink,” in Proceedings of the 29th Conference on Information Communications (INFOCOM '10), pp. 2471–2479, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Fall, “A delay-tolerant network architecture for challenged internets,” in Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 27–34, ACM, August 2003. View at Scopus
  6. H. Ochiai, H. Ishizuka, Y. Kawakami, and H. Esaki, “A dtn-based sensor data gathering for agricultural applications,” IEEE Sensors Journal, vol. 11, no. 11, pp. 2861–2868, 2011.
  7. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein, “Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet,” ACM SIGOPS Operating Systems Review, vol. 36, no. 5, pp. 96–107, 2002. View at Publisher · View at Google Scholar
  8. R. Ayaki, H. Shimada, and K. Sato, “A proposal of sensor data collection system using mobile relay nodes,” Wireless Sensor Network, vol. 4, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar
  9. X. Liu, Q. Huang, and Y. Zhang, “Combs, needles, haystacks: balancing push and pull for discovery in large-scale sensor networks,” in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 122–133, ACM, November 2004. View at Scopus
  10. S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny aggregation service for Ad-Hoc sensor networks,” in Proceedings of the ACM Symposium on Operating System Design and Implementation (OSDI '02), 2002.
  11. S. Burleigh and K. Scott, “Bundle protocol specification,” IETF Request for Comments RFC, vol. 5050, 2007.
  12. L. Zhang, X. W. Zhou, J. P. Wang, Y. Deng, and Q. W. Wu, “Routing protocols for delay and disruption tolerant networks,” Journal of Software, vol. 21, no. 10, pp. 2554–2572, 2010 (Chinese). View at Publisher · View at Google Scholar · View at Scopus
  13. A. Vahdat and D. Becker, “Epidemic routing for partially connected Ad hoc networks,” Tech. Rep. CS-2000-06, Duke University, 2000.
  14. K. A. Harras, K. C. Almeroth, and E. M. Belding-Royer, “Delay tolerant mobile networks (DTMNs): controlled flooding in sparse mobile networks,” in Proceedings of the 4th International IFIP-TC6 Networking Conference: Networking Technologies, Services, and Protocols, Performance of Computer and Communication Networks, Mobile and Wireless Communications Systems (NETWORKING '05), pp. 1180–1192, May 2005. View at Scopus
  15. R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, and R. Krishnan, “Prioritized epidemic routing for opportunistic networks,” in Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking, pp. 62–66, ACM, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently connected networks,” Lecture Notes in Computer Science, vol. 3126, pp. 239–254, 2004. View at Scopus
  17. M. Musolesi, S. Hailes, and C. Mascolo, “Adaptive routing for intermittently connected mobile ad hoc networks,” in Proceedings of the 6th International Symposium on a World of Wireless Mobile and Multimedia Networks, pp. 183–189, IEEE, 2005.
  18. P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE rap: social-based forwarding in delay tolerant networks,” in Proceedings of the 9th ACM International Symposium on Mobile ad Hoc Networking and Computing, pp. 241–250, ACM, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Bulut and B. Szymanski, “Exploiting friendship relations for efficient routing in mobile social networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp. 2254–2265, 2012.
  20. W. Gao, G. Cao, T. La Porta, and J. Han, “On exploiting transient social contact patterns for data forwarding in delay tolerant networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 1, pp. 151–165, 2013.
  21. J. Niu, X. Zhou, Y. Liu, L. Sun, and J. Ma, “A message transmission scheme for community-based opportunistic network,” Journal of Computer Research and Development, vol. 46, no. 12, pp. 2068–2075, 2009 (Chinese). View at Scopus
  22. R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling and analysis of a three-tier architecture for sparse sensor networks,” Ad Hoc Networks, vol. 1, no. 2-3, pp. 215–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Zhao, M. Ammar, and E. Zegura, “Controlling the mobility of multiple data transport ferries in a delay-tolerant network,” in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407–1418, IEEE, March 2005. View at Scopus
  24. A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Using predictable observer mobility for power efficient design of sensor networks,” in Proceedings of the 2nd International Conference on Information Processing in Sensor Networks, pp. 129–145, Springer, 2003.
  25. R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications, 1993.