About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 294578, 8 pages
http://dx.doi.org/10.1155/2012/294578
Research Article

A Minimax Unbiased Estimation Fusion in Distributed Multisensor Localization and Tracking

1College of Computer Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China
2College of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Received 30 August 2012; Accepted 26 October 2012

Academic Editor: Long Cheng

Copyright © 2012 Xiaomei Qu and Jie Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Bar-Shalom, “On the track-to-track correlation problem,” IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 571–572, 1981.
  2. Y. Bar-Shalom and L. Campo, “The effect of the common process noise on the two-sensor fused track covariance,” IEEE Transactions on Aerospace and Electronic Systems, vol. 22, pp. 803–805, 1986.
  3. A. Beck and Y. C. Eldar, “Regularization in regression with bounded noise: a chebyshev center approach,” SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 2, pp. 606–625, 2007. View at Publisher · View at Google Scholar
  4. L. Chen, P. O. Arambel, and R. K. Mehra, “Estimation under unknown correlation: covariance intersection revisited,” IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1879–1882, 2002. View at Publisher · View at Google Scholar
  5. C. Y. Chong, “Distributed fusion architectures and algorithms,” in Proceedings of the International Conference on Multisource-Multisensor Data Fusion, 1998.
  6. C. Y. Chong and S. Mori, “Convex combination and covariance intersection algorithms in distributed fusion,” in Proceedings of the International Conference on Information Fusion (FUSION '01), August 2001.
  7. S.-L. Sun and Z.-L. Deng, “Multi-sensor optimal information fusion Kalman filter,” Automatica, vol. 40, no. 6, pp. 1017–1023, 2004. View at Publisher · View at Google Scholar
  8. E. Song, Y. Zhu, J. Zhou, and Z. You, “Optimal Kalman filtering fusion with cross-correlated sensor noises,” Automatica, vol. 43, no. 8, pp. 1450–1456, 2007. View at Publisher · View at Google Scholar
  9. X. R. Li, Y. Zhu, J. Wang, and C. Han, “Optimal linear estimation fusion—part I: unified fusion rules,” IEEE Transactions on Information Theory, vol. 49, no. 9, pp. 2192–2208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Gao, Y. Zhong, and B. Shirinzadeh, “Random weighting estimation for fusion of multi-dimensional position data,” Information Sciences, vol. 180, no. 24, pp. 4999–5007, 2010. View at Publisher · View at Google Scholar
  11. R. Lobbia and M. Kent, “Data fusion of decentralized local tracker outputs,” IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 3, pp. 787–799, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Julier and J. K. Uhlmann, “Non-divergent estimation algorithm in the presence of unknown correlations,” in Proceedings of the American Control Conference, pp. 2369–2373, June 1997.
  13. S. Julier and J. Uhlmann, “General decentralized data fusion with covariance intersection (CI),” in Handbook of Multisensor Data Fusion, D. Hall and J. Llians, Eds., chapter 12, pp. 1–25, CRC Press, Boca Raton, Fla, USA, 2001.
  14. X. Qu, J. Zhou, E. Song, and Y. Zhu, “Minimax robust optimal estimation fusion in distributed multisensor systems with uncertainties,” IEEE Signal Processing Letters, vol. 17, no. 9, pp. 811–814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Wu, J. Zhou, A. Hu, and F. Li, “Robust distributed fusion for system with randomly uncertain sensor estimation error cross-covariance,” International Journal of Systems Science. In press.
  16. Y. C. Eldar, A. Beck, and M. Teboulle, “A minimax Chebyshev estimator for bounded error estimation,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1388–1397, 2008. View at Publisher · View at Google Scholar
  17. J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11-12, no. 1–4, pp. 625–653, 1999. View at Publisher · View at Google Scholar
  18. R. W. Freund and F. Jarre, “A sensitivity result for semidefinite programs,” Operations Research Letters, vol. 32, no. 2, pp. 126–132, 2004. View at Publisher · View at Google Scholar