About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 352167, 10 pages
http://dx.doi.org/10.1155/2012/352167
Research Article

Distributed Compressed Video Sensing in Camera Sensor Networks

1Key Lab of Universal Wireless Communications, Ministry of Education of PRC, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Department of Electronics and Computer Engineering, Hanyang University, Seoul 133791, Republic of Korea

Received 5 June 2012; Revised 8 December 2012; Accepted 9 December 2012

Academic Editor: Sartaj K. Sahni

Copyright © 2012 Yu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Takamura, “Distributed video coding: trends and future,” IPSJ SIG Technical Reports, vol. 2006, no. 102, pp. 71–76.
  2. D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE Transactions on Information Theory, vol. 19, no. 4, pp. 471–480, 1973. View at Scopus
  3. A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Transactions on Information Theory, vol. 22, no. 1, pp. 1–10, 1976. View at Scopus
  4. A. D. Wyner, “Recent results in the Shannon theory,” IEEE Transactions on Information Theory, vol. 20, no. 1, pp. 2–10, 1974. View at Scopus
  5. R. Puri and K. Ramchandran, “PRISM: a new robust video coding architecture based on distributed compression principles,” Proceedings of the 40th Allerton Conference on Communication, Control, and Computing, Allerton, Ill, USA, October 2002.
  6. B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed video coding,” Proceedings of the IEEE, vol. 93, no. 1, pp. 71–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Panahpour Tehrani, T. Fujii, and M. Tanimoto, “The adaptive distributed source coding of multi-view images in camera sensor networks,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E88-A, no. 10, pp. 2835–2843, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Xu and Z. Xion, “Layered Wyner-Ziv video coding,” IEEE Transactions on Image Processing, vol. 15, no. 12, pp. 3791–3803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2845–2862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. L. Donoho and J. Tanner, “Counting faces of randomly projected polytopes when the projection radically lowers dimension,” Journal of the American Mathematical Society, vol. 22, no. 1, pp. 1–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Mallat, A Wavelet Tour of Signal Processing, Academic, San Diego, Calif, USA, 2nd edition, 1999.
  16. M. B. Wakin, J. N. Laska, M. F. Duarte et al., “An architecture for compressive imaging,” in Proceedings of IEEE International Conference on Image Processing (ICIP '06), pp. 1273–1276, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Akakaya, J. Park, and V. Tarokh, “A coding theory approach to noisy compressive sensing using low density frames,” IEEE Transactions on Signal Processing, vol. 59, no. 11, pp. 5369–5379, 2011.
  18. Y. Zhang, S. Mei, Q. Chen, and Z. Chen, “A novel image/video coding method based on compressed sensing theory,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '08), pp. 1361–1364, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Venkatraman and A. Makur, “A compressive sensing approach to object-based surveillance video coding,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '09), pp. 3513–3516, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. T. Do, Y. Chen, D. T. Nguyen, N. Nguyen, L. Gan, and T. D. Tran, “Distributed compressed video sensing,” in Proceedings of IEEE International Conference on Image Processing (ICIP '09), pp. 1393–1396, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 4, pp. 586–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Xie, S. Rahardja, and Z. Li, “Wyner-Ziv image coding from random projections,” in Proceedings of IEEE International Conference onMultimedia and Expo (ICME '07), pp. 136–139, July 2007. View at Scopus
  23. L. W. Kang and C. S. Lu, “Distributed compressive video sensing,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '09), pp. 1169–1172, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Baron, Sh. Sarvotham, and R. Baraniuk, “Bayesian compressed sensing via belief propagation,” Technical Report TREE 0601, Rice ECE Department, 2006.
  25. C. Weidmann and M. Vetterli, “Rate distortion behavior of sparse sources,” IEEE Transactions on Information Theory, vol. 58, no. 8, pp. 4969–4992, 2012.
  26. F. Wu, J. Fu, Z. Lin, and B. Zeng, “Analysis on rate-distortion performance of compressive sensing for binary sparse source,” in Proceedings of Data Compression Conference (DCC '09), pp. 113–122, March 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Akçakaya and V. Tarokh, “Shannon-theoretic limits on noisy compressive sampling,” IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 492–504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. F. Duarte, M. B. Wakin, and R. G. Baraniuk, “Wavelet-domain compressive signal reconstruction using a hidden Markov tree model,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '08), pp. 5137–5140, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. He and L. Carin, “Exploiting structure in wavelet-based bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3488–3497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Choi and J. Romberg, “Wavelet-domain hidden Markov models,” DSP Group, Rice University, 2009, http://dsp.rice.edu/software/ wavelet-domain-hidden-markov-models.