About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 519792, 13 pages
http://dx.doi.org/10.1155/2012/519792
Research Article

Link Characteristics Measuring in 2.4 GHz Body Area Sensor Networks

1School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
2School of Civil Engineering, Harbin Institute of Technology, Harbin 150006, China
3Department of Computer Science, Tsinghua University, Beijing 100084, China

Received 16 July 2012; Accepted 26 September 2012

Academic Editor: Yingshu Li

Copyright © 2012 Guodong Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Hanson, H. C. Powell Jr., A. T. Barth et al., “Body area sensor networks: challenges and opportunities,” Computer, vol. 42, no. 1, pp. 58–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Gong, R. Wang, and L. Cui, “Research advances and challenges of body sensor network (BSN),” Computer Research and Development, vol. 47, no. 5, pp. 737–753, 2010. View at Scopus
  3. B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on wireless body area networks,” Wireless Networks, vol. 17, no. 1, pp. 1–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Malant, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue: an ad hoc sensor network infrastructure for emergency medical care,” in Proceedings of the MobiSys, 2004.
  5. D. O. Kang, H. J. Lee, E. J. Ko, K. Kang, and J. Lee, “A wearable context aware system for ubiquitous healthcare,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 2006.
  6. N. Oliver and F. Flores-Mangas, “Healthgear: automatic sleep apnea detection and monitoring with a mobile phone,” Journal of Communications, vol. 2, no. 2, pp. 1–9, 2007.
  7. S. Dağtaş, G. Pekhteryev, Z. Şahinoğlu, H. Çam, and N. Challa, “Real-time and secure wireless health monitoring,” International Journal of Telemedicine and Applications, vol. 2008, Article ID 135808, 10 pages, 2008. View at Publisher · View at Google Scholar
  8. M. Tentori and J. Favela, “Activity-aware computing for healthcare,” IEEE Pervasive Computing, vol. 7, no. 2, pp. 51–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Lorincz, B. Chen, G. Challen, et al., “Mercury: a wearable sensor network platform for high-fidelity motiong analysis,” in Proceedings of the SenSys, 2009.
  10. C. Liolios, C. Doukas, G. Fourlas, and I. Maglogiannis, “An overview of body sensor networks in enabling perva-sive healthcare and assistive environments,” in Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments (PETRA '10), June 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ahmadi, D. D. Rowlands, and D. A. James, “Investigating the translational and rotational motion of the swing using accelerometers for athlete skill assessment,” in Proceedings of the 5th IEEE Conference on Sensors, pp. 980–983, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Michahelles and B. Schiele, “Sensing and monitoring professional skiers,” IEEE Pervasive Computing, vol. 4, no. 3, pp. 40–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Quwaider and S. Biswas, “Body posture identification using hidden markov model with a wearable sensor network,” in Proceedings of the BodyNets, 2008.
  14. M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, “Pbn: towards practical activity recognition using smartphone-based body sensor networks,” in Proceedings of the SenSys, Seattle, Wash, USA, 2011.
  15. C. Seeger, A. Buchmann, and K. Laerhoven, “myhealthassistant: a phone-based body sensor network that captures the wearer’s exercises throughout the day,” in Proceedings of the BodyNets, Beijing, China, 2011.
  16. A. Johnasson, “Wave-propagation from medical implant-influence of body shape on radiation pattern,” in Proceedings of the BES, 2002.
  17. S. K. S. Gupta, S. Lalwani, Y. Prakash, E. Elsharawy, and L. Schwiebert, “Towards a propagation model for wireless biomedical applications,” in Proceedings of the International Conference on Communications (ICC '03), pp. 1993–1997, May 2003. View at Scopus
  18. Q. Tang, N. Tummala, S. K. S. Gupta, and L. Schwiebert, “Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 7, pp. 1285–1294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. R. C. Shah and M. Yarvis, “Characteristics of on-body 802.15.4 networks,” in Proceedings of the 2nd IEEE Workshop on Wireless Mesh Networks (WiMESH '06), pp. 138–139, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Jea and M. Srivastava, “Packet delivery performance for onbody mica2dot wireless sensor networks,” in Proceedings of the SECON, 2005.
  21. A. Natarajan, M. Motani, B. De Silva, K. K. Yap, and K. C. Chua, “Investigating network architectures for body sensor networks,” in Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, pp. 19–24, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Shah, L. Nachman, and C. -Y. Wan, “On the performance of bluetooth and ieee 802.15.4 radios in a body area network,” in Proceedings of the BodyNets, Tempe, Ariz, USA, 2008.
  23. A. Natarajan, B. De Silva, K. K. Yap, and M. Motani, “Link layer behavior of body area networks at 2.4 GHz,” in Proceedings of the 15th Annual ACM International Conference on Mobile Computing and Networking (MobiCom '09), pp. 241–252, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Braem, B. Latré, C. Blondia, I. Moerman, and P. Demeester, “Improving reliability in multi-hop body sensor networks,” in Proceedings of the 2nd International Conference on Sensor Technologies and Applications (SENSORCOMM '08), pp. 342–347, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. 2011, http://www.tinyos.net/.
  26. 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver CC2420, Chipcon Products from Texas Instruments, 2009.