About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 813594, 12 pages
http://dx.doi.org/10.1155/2012/813594
Research Article

A Group Key Distribution Scheme for Wireless Sensor Networks in the Internet of Things Scenario

1College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
2School of Software Engineering, Beijing University of Technology, Beijing 100124, China

Received 5 July 2012; Revised 2 October 2012; Accepted 5 October 2012

Academic Editor: Deyun Gao

Copyright © 2012 Hong Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals,” IETF RFC 4919, 2007.
  2. G. Montenegro, N. Kushalnagar, and J. Hui, “Transmission of IPv6 Packets over IEEE 802.15.4 Networks,” IETF RFC 4944, 2007.
  3. J. Granjal, R. Silva, E. Monteiro, J. S. Silva, and F. Boavida, “Why is ipsec a viable option for wireless sensor networks,” in Proceedings of the 5th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS '08), pp. 802–807, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Granjal, E. Monteiro, and J. S. Silva, “A secure interconnection model for IPv6 enabled Wireless Sensor Networks,” in Proceedings of the IFIP Wireless Days (WD '10), pp. 1–6, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Granjal, E. Monteiro, and J. Sá Silva, “Enabling network-layer security on IPv6 wireless sensor networks,” in Proceedings of the 53rd IEEE Global Communications Conference (GLOBECOM '10), pp. 1–6, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig, “Securing communication in 6LoWPAN with compressed IPsec,” in Proceedings of the International Conference on Distributed Computing in Sensor Systems, pp. 1–8, 2011.
  7. S. Raza, T. Voigt, and U. Roedig, “6LoWPAN Extension for IPsec,” http://www.iab.org/wp-content/IAB-uploads/2011/03/Raza.pdf.
  8. W. Jung, S. Hong, M. Ha, Y. J. Kim, and D. Kim, “SSL-based lightweight security of ip-based wireless sensor networks,” in Proceedings of the International Conference on Advanced Information Networking and Applications Workshops (WAINA '09), pp. 1112–1117, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Mzid, M. Boujelben, H. Youssef, and M. Abid, “Adapting TLS handshake protocol for heterogeneous IP-based WSN using identity based cryptography,” in Proceedings of the International Conference on Wireless and Ubiquitous Systems, pp. 1–8, 2010.
  10. H. Yu, J. He, T. Zhang, P. Xiao, and Y. Zhang, “Enabling End-to-End Secure Communication between Wireless Sensor Networks and the Internet,” World Wide Web Journal.
  11. R. Riaz, K. H. Kim, and H. F. Ahmed, “Security analysis survey and framework design for IP connected LoWPANs,” in Proceedings of the International Symposium on Autonomous Decentralized Systems (ISADS '09), pp. 29–34, March 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment issues for the IP multicast service and architecture,” IEEE Network, vol. 14, no. 1, pp. 78–88, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A survey of applicaiton-layer multicast protocols,” IEEE Communications Surveys and Tutorials, vol. 9, no. 3, pp. 58–74, 2007.
  14. H. Harney and C. Muckenhirn, “Group Key Management Protocol (GKMP) Architecture,” IETF RFC 2094, 1997.
  15. D. Wailner, E. Harder, and R. Agee, “Key Management for Multicast: Issues and Architectures,” IETF RFC 2627, 1997.
  16. G. Horng, “Cryptanalysis of a key management scheme for secure multicast communications,” IEICE Transactions on Communications, vol. 85, no. 5, pp. 1050–1051, 2002. View at Scopus
  17. J. H. Son, J. S. Lee, and S. W. Seo, “Topological key hierarchy for energy-efficient group key management in wireless sensor networks,” Wireless Personal Communications, vol. 52, no. 2, pp. 359–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Setiner, G. Taudik, and M. Waidnet, “Cliques: a new approach to group key agreement,” in Proceedings of the 18th International Conference on Distributed Computing Systems, pp. 380–387, 1998.
  19. A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Mittra, “Iolus: a framework for scalable secure multicast,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 4, pp. 277–288, 1997.
  21. R. Dutta, Y. D. Wu, and S. Mukhopadhyay, “Constant storage self-healing key distribution with revocation in wireless sensor network,” in Proceedings of the IEEE International Conference on Communications (ICC '07), pp. 1323–1328, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Yu and J. He, “Trust-based mutual authentication for bootstrapping in 6LoWPAN,” Journal of Communications, vol. 7, no. 8, pp. 634–642, 2012.
  23. BLOOM BH, “Space/time trade-offs in hash coding with allowable errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970. View at Publisher · View at Google Scholar · View at Scopus
  24. Texas Instruments Inc., “Single-Chip 2.4GHz IEEE 802.15.4 Compliant and ZigBee (TM) Ready RF Transceiver,” http://www.ti.com/lit/ds/symlink/cc2420.pdf.