About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 820716, 13 pages
http://dx.doi.org/10.1155/2012/820716
Research Article

A Wireless Sensor Network for Precise Volatile Organic Compound Monitoring

1University of Florence and The MIDRA Consortium, 50139 Florence, Italy
2Health, Safety, Environment and Quality Department, Eni S.p.A., 00144 Rome, Italy
3Netsens s.r.l, Sesto Fiorentino, 50019 Florence, Italy

Received 24 November 2011; Accepted 8 February 2012

Academic Editor: Carlos Ramos

Copyright © 2012 Gianfranco Manes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Manes, R. Fusco, L. Gelpi, A. Manes, D. Di Palma, and G. Collodi, Real-Time Monitoring of Volatile Organic Compounds in Hazardous Sites, chapter 14, Intech Book, Environmental Monitoring, 2011.
  2. W. Tsujita, H. Ishida, and T. Moriizumi, “Dynamic gas sensor network for air pollution monitoring and its auto-calibration,” in Proceedings of the IEEE Sensors, vol. 1, pp. 56–59, October 2004. View at Scopus
  3. F. Tsow, E. Forzani, A. Rai, et al., “A wearable and wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds in,” IEEE Sensors Journal, vol. 9, no. 12, pp. 1734–1740, 2009. View at Publisher · View at Google Scholar
  4. S. Choi, N. Kim, H. Cha, and R. Ha, “Micro sensor node for air pollutant monitoring: hardware and software issues,” Sensors, vol. 9, no. 10, pp. 7970–7987, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, “An analysis of a large scale habitat monitoring application,” in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 214–226, November 2004. View at Scopus
  6. R. Adler, P. Buonadonna, J. Chabra, et al., Design and Deployment of Industrial Sensor Networks: Experiences from the North Sea and a Semiconductor Plant in ACM SenSys, San Diego, Calif, USA, 2005.
  7. MiniPID User Manual V1.8, IonScience Ltd, 2000.
  8. J. Jeong, D. E. Culler, and J. H. Oh, “Empirical analysis of transmission power control algorithms for wireless sensor networks,” in Proceedings of the 4th International Conference on Networked Sensing Systems (INSS '07), pp. 27–34, IEEE Press, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Manes, R. Fantacci, F. Chiti, et al., “Energy efficient MAC protocols for wireless sensor networks endowed with directive antennas: a cross-layer solution,” in Proceedings of the IEEE Radio and Wireless Conference, pp. 239–242, Orlando, Fla, USA, January 2009.
  10. J. G. W. Price, D. C. Fenimore, P. G. Simmonds, and A. Zlatkis, “Design and operation of a photoionization detector for gas chromatography,” Analytical Chemistry, vol. 40, no. 3, pp. 541–547, 1968. View at Scopus
  11. D. C. Locke and C. E. Meloan, “Study of the photoionization detector for gas chromatography,” Analytical Chemistry, vol. 37, no. 3, pp. 389–395, 1965. View at Scopus
  12. G. F. Manes, unpublished results.
  13. Alphasense Ltd., Technical specifications; Doc. Ref. PID-AH/MAR11.