About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 861704, 11 pages
http://dx.doi.org/10.1155/2012/861704
Research Article

Energy-Model-Based Optimal Communication Systems Design for Wireless Sensor Networks

The Key Lab for Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Received 29 June 2012; Revised 22 September 2012; Accepted 3 October 2012

Academic Editor: George P. Efthymoglou

Copyright © 2012 Ye Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Wang, Y. Ren, J. Zhao, Z. Guo, and R. Yao, “Energy efficient transmission protocol for UWB WPAN,” in Proceedings of the IEEE 60th Vehicular Technology Conference (VTC '04), pp. 5292–5296, Los Angeles, Calif, USA, September 2004. View at Scopus
  2. Z. Zhou, S. Zhou, S. Cui, and J. H. Cui, “Energy-efficient cooperative communication in a clustered wireless sensor network,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3618–3628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Zhou, S. Zhou, J. H. Cui, and S. Cui, “Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 3066–3079, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Gao, L. Qian, D. R. Vaman, and Q. Qu, “Energy efficient adaptive modulation in wireless cognitive radio sensor networks,” in Proceedings of the IEEE International Conference on Communications (ICC '07), pp. 3980–3986, Scotland, UK, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Yang, Y. Yuan, and J. He, “Energy aware data gathering based on adaptive modulation scaling in wireless sensor networks,” in Proceedings of the IEEE 60th Vehicular Technology Conference (VTC '04), pp. 2794–2798, Los Angeles, Calif, USA, September 2004. View at Scopus
  6. S. Cui, A. J. Goldsmith, and A. Bahai, “Modulation optimization under energy constraints,” in Proceedings of the International Conference on Communications (ICC '03), pp. 2805–2811, King of Prussia, Pa, USA, May 2003. View at Scopus
  7. T. Wang, W. Heinzelman, and A. Seyedi, “Minimization of transceiver energy consumption in wireless sensor networks with AWGN channels,” in Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 62–66, Monticello, Ill, USA, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Uppu, B. V. S. S. Subrahmanyam, and R. Garimella, “Energy efficient routing technique for ad-hoc sensor networks [EERT],” in Proceedings of the 3rd IEEE Sensors Applications Symposium (SAS '08), pp. 228–232, Atlanta, Ga, USA, February 2008. View at Scopus
  9. D. Li, X. Jia, and H. Liu, “Energy efficient broadcast routing in static ad hoc wireless networks,” IEEE Transactions on Mobile Computing, vol. 3, no. 2, pp. 144–151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Mahfoudh and P. Minet, “An energy efficient routing based on OLSR in wireless ad hoc and sensor networks,” in Proceedings of the 22nd International Conference on Advanced Information Networking and Applications Workshops/Symposia (AINA '08), pp. 1253–1259, Ginowan, Japan, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Lahiri, A. Raghunathan, and S. Dey, “Communication-based power management,” IEEE Design and Test of Computers, vol. 19, no. 4, pp. 118–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Cui, R. Madan, A. J. Goldsmith, and S. Lall, “Cross-layer energy and delay optimization in small-scale sensor networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 10, pp. 3688–3699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Srivatsava, “Power-aware communication systems,” in Power-Aware Design Methodologies, M. Rabaey, Ed., chapter 11, Kluwer Academic Publishers, Norwell, Mass, USA, 2002.
  14. A. Y. Wang, Seong Hwan Cho, C. G. Sodini, and A. P. Chandrakasan, “Energy efficient modulation and MAC for asymmetric RF microsensor systems,” in Proceedings of the International Symposium on Low Electronics and Design (ISLPED '01), pp. 106–111, Huntington Beach, Calif, USA, August 2001. View at Scopus
  15. C. Schurgers, O. Aberthorne, and M. B. Srivastava, “Modulation scaling for energy aware communication systems,” in Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED '01), pp. 96–99, Huntington Beach, Calif, USA, August 2001.
  16. Y. Li, B. Bakkaloglu, and C. Chakrabarti, “A system level energy model and energy-quality evaluation for integrated transceiver front-ends,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 1, pp. 90–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Li, M. Reisslein, and C. Chakrabarti, “Energy-efficient video transmission over a wireless link,” IEEE Transactions on Vehicular Technology, vol. 58, no. 3, pp. 1229–1244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. “CC2500 Cost Low-Power 2. 4 GHz RF Transceiver, (Rev.C),” Datasheet from TI’s website.
  19. B. Razavi, RF Microelectronics, Prentice-Hall, Englewood Cliffs, NJ, USA, 1998.
  20. D. C. Daly and A. P. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1003–1010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Y. Wang and C. G. Sodini, “On the energy efficiency of wireless transceiver,” in Proceedings of the IEEE International Conference on Communication (ICC '06), pp. 3783–3787, 2006.
  22. D. A. Bryan, “QAM for terrestrial and cable transmission,” IEEE Transactions on Consumer Electronics, vol. 41, no. 3, pp. 383–391, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. K. H. Huang and C. K. Wang, “A cost effective binary FSK demodulator for low-IF radios,” in Proceedings of the International Symposium on VLSI Technology, Systems, and Applications, pp. 133–136, April 2001. View at Scopus
  24. T. S. Rappaport, Wireless Communications: Principles and Practice, Pearson Education Asia Limited and Publishing House of Electronics Industry, 2nd edition, 2004.
  25. G. Hanington, P. F. Chen, P. M. Asbeck, and L. E. Larson, “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1471–1476, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Fan, P. Zhang, B. Xu, and C. Wu, Principles of Communications, Publishing House of National Defense Inustry, 5th edition, 2001.
  27. J. Y. Hasani and M. Kamarei, “Analysis and optimum design of a class E RF power amplifier,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 6, pp. 1759–1768, 2008. View at Publisher · View at Google Scholar · View at Scopus