About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 962523, 12 pages
http://dx.doi.org/10.1155/2012/962523
Review Article

A Survey of Localization in Wireless Sensor Network

1College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
2Faculty of Engineering, University of Sydney, Sydney, 2006 NSW, Australia
3Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
4Department of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK

Received 18 September 2012; Accepted 16 November 2012

Academic Editor: Wei Meng

Copyright © 2012 Long Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Wang and L. Xiao, “Sensor localization in concave environments,” ACM Transactions on Sensor Networks, vol. 4, no. 1, article 3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. L. M. Kaplan, Q. Le, and P. Molnar, “Maximum likelihood methods for bearings-only target localization,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 3001–3004, Salt Lake City, Utah, USA, May 2001.
  3. Y. Weng, W. Xiao, and L. Xie, “Total least squares method for robust source localization in sensor networks using TDOA measurements,” International Journal of Distributed Sensor Networks, vol. 2011, Article ID 172902, 8 pages, 2011. View at Publisher · View at Google Scholar
  4. X. Qu and L. Xie, “Source localization by TDOA with random sensor position errors—part I: static sensors,” in Proceedings of the 15th International Conference on Information Fusion, pp. 48–53, Singapore, July 2012.
  5. X. Qu and L. Xie, “Source localization by TDOA with random sensor position errors—part II: mobile sensors,” in Proceedings of the 15th International Conference on Information Fusion, pp. 54–59, Singapore, July 2012.
  6. K. C. Ho, “Bias reduction for an explicit solution of source localization using TDOA,” IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2101–2114, 2012. View at Publisher · View at Google Scholar
  7. D. Blatt and A. O. Hero, “Energy-based sensor network source localization via projection onto convex sets,” IEEE Transactions on Signal Processing, vol. 54, no. 9, pp. 3614–3619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Deng and Z. Liu, “Weighted least-squares solutions of energy-based collaborative source localization using acoustic array,” International Journal of Computer Science and Network Security, vol. 7, no. 1, pp. 159–165, 2007.
  9. Q. Shi and C. He, “A new incremental optimization algorithm for ML-based source localization in sensor networks,” IEEE Signal Processing Letters, vol. 15, pp. 45–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Meesookho, U. Mitra, and S. Narayanan, “On energy-based acoustic source localization for sensor networks,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 365–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Li and Y. H. Hu, “Energy-based collaborative source localization using acoustic microsensor array,” EURASIP Journal on Advances in Signal Processing, vol. 2003, article 985029, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Maşazade, R. Niu, P. K. Varshney, and M. Keskinoz, “Energy aware iterative source localization for wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4824–4835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. G. Rabbat, R. D. Nowak, and J. Bucklew, “Robust decentralized source localization via averaging,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), vol. 5, pp. V1057–V1060, Philadelphia, Pa, USA, March 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Ampeliotis and K. Berberidis, “Energy-based model-independent source localization in wireless sensor networks,” in Proceedings of the 16th European Signal Processing Conference, Lausanne, Switzerland, August 2008.
  15. X. Sheng and Y. H. Hu, “Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 53, no. 1, pp. 44–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Meng, W. Xiao, and L. Xie, “An efficient EM algorithm for energy-based multisource localization in wireless sensor networks,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 1017–1027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Ampeliotis and K. Berberidis, “Low complexity multiple acoustic source localization in sensor networks based on energy measurements,” Signal Processing, vol. 90, no. 4, pp. 1300–1312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Niu and P. Varshney, “Target location estimation in wireless sensor networks using binary data,” in Proceedings of the 38th International Conference on Information Sciences and Systems, pp. 17–19, Princeton, NJ, USA, March 2004.
  19. X. Liu, G. Zhao, and X. Ma, “Target localization and tracking in noisy binary sensor networks with known spatial topology,” Wireless Communications and Mobile Computing, vol. 9, no. 8, pp. 1028–1039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. P. Michaelides and C. G. Panayiotou, “SNAP: fault tolerant event location estimation in sensor networks using binary data,” IEEE Transactions on Computers, vol. 58, no. 9, pp. 1185–1197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Xu, X. Gao, J. Wan, and N. Xiong, “Trust index based fault tolerant multiple event localization algorithm for WSNs,” Sensors, vol. 11, no. 7, pp. 6555–6574, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Lu, X. Xiang, D. Zhang, R. Mao, and Y. Feng, “Localization algorithm based on maximum a posteriori in wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 2012, Article ID 260302, 7 pages, 2012. View at Publisher · View at Google Scholar
  23. L. Cheng, C. D. Wu, Y. Z. Zhang, and Y. Wang, “Indoor robot localization based on wireless sensor networks,” IEEE Transactions on Consumer Electronics, vol. 57, no. 3, pp. 1099–1104, 2011. View at Publisher · View at Google Scholar
  24. Y. Wang, X. Wang, D. Wang, and D. P. Agrawal, “Range-free localization using expected hop progress in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 10, pp. 1540–1552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Xu, Y. Tu, W. Xiao, Y. Mao, and T. Shen, “An archimedes curve-based mobile anchor node localization algorithm in wireless sensor networks,” in Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA '10), pp. 6993–6997, Jinan, China, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Lee, W. Chung, and E. Kim, “Robust DV-Hop algorithm for localization in wireless sensor network,” in Proceedings of the International Conference on Control, Automation and Systems, pp. 2506–2509, Gyeonggi-do, South Korea, October 2010.
  27. J. Zhang, W. Li, D. Cui, X. Sun, and F. Zhou, “Study on improved DV-Hop node localization algorithm in wireless sensor network,” in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA '10), pp. 1855–1858, Taichung, Taiwan, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. W. Lee, D. Y. Lee, and C. W. Lee, “Enhanced DV-Hop algorithm with reduced hop-size error in ad hoc networks,” IEICE Transactions on Communications, vol. 94, no. 7, pp. 2130–2132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zheng, L. Wan, Z. Sun, and S. Mei, “A long range DV-Hop localization algorithm with placement strategy in wireless sensor networks,” in Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '08), Dalian, China, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Lee, W. Chung, and E. Kim, “A new range-free localization method using quadratic programming,” Computer Communications, vol. 34, no. 8, pp. 998–1010, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Zhong and T. He, “RSD: a metric for achieving range-free localization beyond connectivity,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 11, pp. 1943–1951, 2011. View at Publisher · View at Google Scholar
  32. Q. B. He, F. Chen, S. Cai, J. Hao, and Z. Liu, “An efficient range-free localization algorithm for wireless sensor networks,” Science China Technological Sciences, vol. 54, no. 5, pp. 1053–1060, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Chen, W. Chung, and S. Yuan, “Order-based localization scheme for ad hoc sensor networks,” in Proceedings of the 73rd IEEE Vehicular Technology Conference, pp. 1–5, Budapest, Hungary, May 2011.
  34. H. Lim and J. C. Hou, “Distributed localization for anisotropic sensor networks,” ACM Transactions on Sensor Networks, vol. 5, no. 2, article 11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Brida, J. Machaj, and J. Duha, “A novel optimizing algorithm for DV based positioning methods in ad hoc networks,” Elektronika ir Elektrotechnika, no. 1, pp. 33–38, 2010. View at Scopus
  36. O. Chia-Ho, “A localization scheme for wireless sensor networks using mobile anchors with directional antennas,” IEEE Sensors Journal, vol. 7, no. 11, pp. 1607–1616, 2011.
  37. H. P. Tan, R. Diamant, and W. K. G. Seah, “A survey of techniques and challenges in underwater localization,” Ocean Engineering, vol. 38, no. 14-15, pp. 1663–1676, 2011. View at Publisher · View at Google Scholar
  38. X. Luo, W. J. O'Brien, and C. L. Julien, “Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites,” Advanced Engineering Informatics, vol. 25, no. 2, pp. 355–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. J. Suroso, P. Cherntanomwong, P. Sooraksa, and J. Takada, “Fingerprint-based technique for indoor localization in wireless sensor networks using Fuzzy C-Means clustering algorithm,” in Proceedings of the International Symposium on Intelligent Signal Processing and Communications Systems, pp. 1–5, Chiang Mai, Thailand, December 2011.
  40. S. H. Fang, T. N. Lin, and K.-C. Lee, “A novel algorithm for multipath fingerprinting in indoor WLAN environments,” IEEE Transactions on Wireless Communications, vol. 7, no. 9, pp. 3579–3588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Swangmuang and P. Krishnamurthy, “An effective location fingerprint model for wireless indoor localization,” Pervasive and Mobile Computing, vol. 4, no. 6, pp. 836–850, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Wang, Q. Gao, H. Wang, et al., “Differential radio map-based robust indoor localization,” EURASIP Journal on Wireless Communications and Networking, vol. 2011, article 17, 2011. View at Publisher · View at Google Scholar
  43. L. Gogolak, S. Pletl, and D. Kukolj, “Indoor fingerprint localization in WSN environment based on neural network,” in Proceedings of the 9th IEEE International Symposium on Intelligent Systems and Informatics, pp. 293–296, Subotica, Serbia, September 2011.
  44. M. I. Silventoinen and T. Rantalainen, “Mobile station emergency locating in GSM,” in Proceedings of IEEE International Conference on Personal Wireless Communications, pp. 232–238, New Delhi, India, February 1996. View at Scopus
  45. M. P. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proceedings of the 5th IEEE International Conference on Universal Personal Communications Record (ICUPC '96), pp. 827–831, Cambridge, Mass, USA, October 1996. View at Scopus
  46. J. Borras, P. Hatrack, and N. B. Mandayam, “Decision theoretic framework for NLOS identification,” in Proceedings of the 48th IEEE Vehicular Technology Conference (VTC '98), pp. 1583–1587, Ottawa, Canada, May 1998. View at Scopus
  47. S. Mazuelas, F. A. Lago, J. Blas et al., “Prior NLOS measurement correction for positioning in cellular wireless networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2585–2591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. T. Chan, W. Y. Tsui, H. C. So, and P. C. Ching, “Time-of-arrival based localization under NLOS conditions,” IEEE Transactions on Vehicular Technology, vol. 55, no. 1, pp. 17–24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Venkatraman and J. J. Caffery, “Statistical approach to non-line-of-sight BS identification,” in Proceedings of the 5th International Symposium on Wireless Personal Multimedia Communications, vol. 1, pp. 296–300, Honolulu, Hawaii, USA, October 2002. View at Publisher · View at Google Scholar
  50. S. Gezici, H. Kobayashi, and H. V. Poor, “Non-parametric non-line-of-sight identification,” in Proceedings of the 58th IEEE Vehicular Technology Conference (VTC '03-Fall), vol. 4, pp. 2544–2548, Orlando, Fla, USA, October 2003. View at Scopus
  51. K. Yu and Y. J. Guo, “Statistical NLOS identification based on AOA, TOA, and signal strength,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, pp. 274–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Cheng, C. D. Wu, Y. Z. Zhang, and Y. Wang, “An indoor localization strategy for mini-UAV in presence of obstacles,” International Journal of Advanced Robotic Systems, vol. 2012, pp. 1–8, 2012. View at Publisher · View at Google Scholar
  53. S. Al-Jazzar, J. Caffery Jr., and H. R. You, “A scattering model based approach to NLOS mitigation in TOA location systems,” in Proceedings of the 55th IEEE Vehicular Technology Conference, pp. 861–865, Birmingham, Ala, USA, May 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Liu, P. Deng, and P. Fan, “A TOA reconstruction method based on ring of scatterers model,” in Proceedings of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies ( PDCAT '03), pp. 375–377, Chengdu, China, August 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. W. H. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 12, no. 2, pp. 187–194, 1976. View at Scopus
  56. P. C. Chen, “A non-line-of-sight error mitigation algorithm in location estimation,” in Proceedings of IEEE Wireless Communications and Networking Conference, vol. 1, pp. 316–320, New Orleans, La, USA, September 1999.
  57. L. Cheng, C. D. Wu, Y. Z. Zhang, and H. Chu, “Mobile location estimation scheme in NLOS environment,” IEICE Electronics Express, vol. 8, no. 21, pp. 1829–1835, 2011. View at Publisher · View at Google Scholar
  58. S. Venkatraman, J. J Caffery, and H. R. You, “Location using LOS range estimation in NLOS environments,” in Proceedings of the 55th Vehicular Technology Conference, pp. 856–860, Birmingham, Ala, USA, May 2002. View at Scopus
  59. I. Povescu, I. Nafomita, P. Constantinou, A. Kanatas, and N. Moraitis, “Neural networks applications for the prediction of propagation path loss in urban environments,” in Proceedings of the 53rd IEEE Semi-Annual Vehicular Technology Conference, pp. 387–391, Rhodes, Greece, May 2001. View at Publisher · View at Google Scholar
  60. B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” in Proceedings of IEEE Wireless Communications and Networking (WCNC '03), vol. 3, pp. 1969–1973, New Orleans, La, USA, March 2003. View at Publisher · View at Google Scholar
  61. W. Kim, G. I. Jee, and J. Lee, “Wireless location with NLOS error mitigation in Korean CDMA system,” in Proceedings of the 2nd International Conference on 3G Mobile Communication Technologies, pp. 134–138, London, UK, March 2001.
  62. L. M. Kaplan, “Global node selection for localization in a distributed sensor network,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 1, pp. 113–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. L. M. Kaplan, “Local node selection for localization in a distributed sensor network,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 1, pp. 136–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Bel, J. L. Vicario, and G. Seco-Granados, “Node selection for cooperative localization: efficient energy vs. accuracy trade-off,” in Proceedings of the 5th IEEE International Symposium on Wireless Pervasive Computing (ISWPC '10), pp. 307–312, Modena, Italy, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. X. J. Yang, K. Y. Xing, K. L. Shi, and Q. Pan, “Dynamic collaborative algorithm for maneuvering target tracking in sensor networks,” Acta Automatica Sinica, vol. 33, no. 10, pp. 1029–1035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. W. S. Zhang and G. H. Cao, “DCTC: dynamic convoy tree-based collaboration for target tracking in sensor networks,” IEEE Transactions on Wireless Communications, vol. 3, no. 5, pp. 1689–1701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. X. J. Yang, K. Y. Xing, K. L. Shi, and Q. Pan, “Dynamic collaborative algorithm for maneuvering target tracking in sensor networks,” Acta Automatica Sinica, vol. 33, no. 10, pp. 1029–1035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. E. M. Hamouda and C. Phillips, “Metadata based optimal sensor selection for multi-target tracking in wireless sensor networks,” International Journal of Research and Reviews in Computer Science, vol. 2, no. 1, pp. 189–200, 2011.
  69. A. Bel, J. Lopez Vicario, and G. Seco-Granados, “Real-time path loss and node selection for cooperative localization in wireless sensor networks,” in Proceedings of the 21st IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Workshops (PIMRC '10), pp. 283–288, Istanbul, Turkey, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Zhao and A. Nehorai, “Information-driven distributed maximum likelihood estimation based on Gauss-Newton method in wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 55, no. 9, pp. 4669–4682, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Ren and M. Q. Meng, “Power adaptive localization algorithm for wireless sensor networks using particle filter,” IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2498–2508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. C. You, Y. Chen, J. Chiang, P. Huang, H. Chu, and S. Lau, “Sensor-enhanced mobility prediction for energy-efficient localization,” in Proceedings of the 3rd Annual IEEE Conference on Sensor and Ad Hoc Communications and Networks, vol. 1, pp. 565–574, Reston, Va, USA, September 2006.
  73. J. Gribben, A. Boukerche, and R. Pazzi, “Scheduling for scalable energy-efficient localization in mobile ad hoc networks,” in Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON '10), Boston, Mass, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Zhu and L. M. Ni, “Probabilistic wakeup: adaptive duty cycling for energy efficient event detection,” in Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM '07), pp. 360–367, Chania, Greece, October 2007.
  75. D. K. Goldenberg, P. Bihler, M. Cao et al., “Localization in sparse networks using sweeps,” in Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (MOBICOM '06), pp. 110–121, Los Angeles, Calif, USA, September 2006. View at Scopus
  76. X. Ji and H. Zha, “Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling,” in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), vol. 4, pp. 2652–2661, Hong Kong, China, March 2004. View at Publisher · View at Google Scholar
  77. Y. Shang and W. Ruml, “Improved MDS-based localization,” in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), vol. 4, pp. 2640–2651, Hong Kong, China, March 2004.
  78. K.-F. Ssu, C.-H. Ou, and H. C. Jiau, “Localization with mobile anchor points in wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 1187–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Erol, L. F. M. Vieira, and M. Gerla, “Localization with Dive'n'Rise (DNR) beacons for underwater acoustic sensor networks,” in Proceedings of the 2nd Workshop on Underwater Networks (WuWNet '07), pp. 97–100, Montreal, Canada, September 2007.
  80. U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed sensor localization in random environments using minimal number of anchor nodes,” IEEE Transactions on Signal Processing, vol. 57, no. 5, pp. 2000–2016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Tam, K. Cheng, and K. Lui, “Using micro-genetic algorithms to improve localization in wireless sensor networks,” Journal of Communications, vol. 1, no. 4, pp. 1–10, 2006.
  83. B. Denis, M. Maman, and L. Ouvry, “On the scheduling of ranging and distributed positioning updates in cooperative IR-UWB networks,” in Proceedings of IEEE International Conference on Ultra-Wideband (ICUWB '09), pp. 370–375, Vancouver, Canada, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Das and H. Wymeersch, “Censored cooperative positioning for dense wireless networks,” in Proceedings of the 21st IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Workshops (PIMRC '10), pp. 262–266, Istanbul, Turkey, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Fujiwara, K. Mizugaki, T. Nakagawa, D. Maeda, and M. Miyazaki, “TOA/TDOA hybrid relative positioning system using UWB-IR,” in Proceedings of IEEE Radio and Wireless Symposium (RWS '09), pp. 679–682, San Diego, Calif, USA, January 2009.
  86. M. R. Gholami, S. Gezici, M. Rydström, and E. G. Ström, “A distributed positioning algorithm for cooperative active and passive sensors,” in Proceedings of the 21st IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC '10), pp. 1713–1718, Instanbul, Turkey, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. X. Du, D. Mandala, W. Zhang, C. You, and Y. Xiao, “A boundary-node based localization scheme for heterogeneous wireless sensor networks,” in Proceedings of IEEE Military Communications Conference (MILCOM '07), pp. 1–7, Orlando, Fla, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Dong, P. Agrawal, and K. Sivalingam, “Localization error evaluation in heterogeneous sensor networks,” in Proceedings of IEEE Global Telecommunications Conference, pp. 1–5, New Orleans, La, USA, December 2008.
  89. C. T. Chiang, P. H. Tseng, and K. T. Feng, “Hybrid unified kalman tracking algorithms for heterogeneous wireless localization systems,” IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 702–715, 2012. View at Publisher · View at Google Scholar
  90. C. Shen and D. Pesch, “A heuristic relay positioning algorithm for heterogeneous wireless networks,” in Proceedings of the 69th IEEE Vehicular Technology Conference, pp. 1–5, Barcelona, Spain, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Aksu, D. Aksoy, and I. Korpeoglu, “A study of localization metrics: evaluation of position errors in wireless sensor networks,” Computer Networks, vol. 55, no. 15, pp. 3562–3577, 2011. View at Publisher · View at Google Scholar