About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2013 (2013), Article ID 272916, 11 pages
http://dx.doi.org/10.1155/2013/272916
Research Article

A Study of Mobile Sensing Using Smartphones

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Received 8 December 2012; Accepted 15 January 2013

Academic Editor: Chao Song

Copyright © 2013 Ming Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Ishida, K. Suetsugu, T. Nakamoto, and T. Moriizumi, “Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors,” Sensors and Actuators A, vol. 45, no. 2, pp. 153–157, 1994. View at Scopus
  2. H. Ishida, T. Nakamoto, and T. Moriizumi, “Remote sensing of gas/odor source location and concentration distribution using mobile system,” Sensors and Actuators B, vol. 49, no. 1-2, pp. 52–57, 1998. View at Scopus
  3. S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G. S. Ahn, and A. T. Campbell, “BikeNet: a mobile sensing system for cyclist experience mapping,” ACM Transactions on Sensor Networks, vol. 6, no. 1, pp. 1–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Choudhury, G. Borriello, S. Consolvo et al., “The mobile sensing platform: an embedded activity recognition system,” IEEE Pervasive Computing, vol. 7, no. 2, pp. 32–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Lo, S. Thiemjarus, R. King, et al., “Body sensor network-a wireless sensor platform for pervasive healthcare monitoring,” in Proceedings of the 3rd International Conference on Pervasive Computing, 2005.
  6. X. Tant, D. Kim, N. Usher et al., “An autonomous robotic fish for mobile sensing,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 5424–5429, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Arora, P. Dutta, S. Bapat et al., “A line in the sand: a wireless sensor network for target detection, classification, and tracking,” Computer Networks, vol. 46, no. 5, pp. 605–634, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. C. Tseng, S. P. Kuo, and H. W. Lee, “Location tracking in a wireless sensor network by mobile agents and its data fusion strategies,” Information Processing in Sensor Networks, pp. 554–554, 2003.
  9. G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring volcanic eruptions with a wireless sensor network,” in Proceedings of the 2nd European Workshop on Wireless Sensor Networks (EWSN '05), pp. 108–120, February 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Werner-Allen, K. Lorincz, M. Welsh et al., “Deploying a wireless sensor network on an active volcano,” IEEE Internet Computing, vol. 10, no. 2, pp. 18–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. T. Campbell, S. B. Eisenman, N. D. Lane et al., “The rise of people-centric sensing,” IEEE Internet Computing, vol. 12, no. 4, pp. 12–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Accelerometer, http://en.wikipedia.org/wiki/Accelerometer.
  13. A Guide To using IMU (Accelerometer and Gyroscope Devices) in Embedded Applications, http://www.starlino.com/imu_guide.html.
  14. M. Arraigada and M. Partl, “Calculation of displacements of measured accelerations, analysis of two accelerometers and application in road engineering,” in Proceedings of the Swiss Transport Research Conference, 2006.
  15. Gyroscope, http://en.wikipedia.org/wiki/Gyroscope.
  16. Magnetometer, http://en.wikipedia.org/wiki/Magnetometer.
  17. S. Sen, R. Roy Choudhury, and S. Nelakuditi, “CSMA/CN: carrier sense multiple access with collision notification,” IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 544–556, 2012.
  18. Cross-correlation, http://en.wikipedia.org/wiki/Cross-correlation.
  19. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Bay, T. Tuytelaars, and L. Gool, “SURF: speeded up robust features,” in Proceedings of the Computer Vision (ECCV '06), pp. 404–417, Springer, Berlin, Germany, 2006.
  21. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 886–893, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and other Kernel-Based Learning Methods, Cambridge University Press, 2000.
  26. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Scopus
  28. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, ACM press, New York, NY, USA, 1999.
  29. B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, 2001.
  30. I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “Did you see Bob?: human localization using mobile phones,” in Proceedings of the 16th Annual Conference on Mobile Computing and Networking (MobiCom '10), pp. 149–160, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. M. Boore, “Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake,” Bulletin of the Seismological Society of America, vol. 91, no. 5, pp. 1199–1211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. Boore, C. D. Stephens, and W. B. Joyner, “Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, earthquake,” Bulletin of the Seismological Society of America, vol. 92, no. 4, pp. 1543–1560, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Boore, “Analog-to-digital conversion as a source of drifts in displacements derived from digital recordings of ground acceleration,” Bulletin of the Seismological Society of America, vol. 93, no. 5, pp. 2017–2024, 2003. View at Scopus
  34. I. Constandache, R. R. Choudhury, and I. Rhee, “Towards mobile phone localization without war-driving,” in Proceedings of the IEEE INFOCOM, pp. 1–9, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive GPS-based positioning for smartphones,” in Proceedings of the 8th Annual International Conference on Mobile Systems, Applications and Services (MobiSys '10), pp. 299–314, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava, “SensLoc: sensing everyday places and paths using less energy,” in MobiSys 8th ACM International Conference on Embedded Networked Sensor Systems (SenSys '10), pp. 43–56, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, “Mobile data offloading: how much can WiFi deliver?” in Proceedings of the 6th International Conference on Emerging Networking Experiments and Technologies (Co-NEXT '10), p. 26, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative transit tracking using smart-phones,” in Proceedings of the 8th ACM International Conference on Embedded Networked Sensor Systems (SenSys '10), pp. 85–98, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Schulman, V. Navda, R. Ramjee et al., “Bartendr: a practical approach to energy-aware cellular data scheduling,” in Proceedings of the 16th Annual Conference on Mobile Computing and Networking (MobiCom '10), pp. 85–96, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Indoor localization without infrastructure using the acoustic background spectrum,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services (MobiSys '11), pp. 155–168, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. D. A. Johnson and M. M. Trivedi, “Driving style recognition using a smartphone as a sensor platform,” in Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC '11), pp. 1609–1615, 2011.
  42. D. Mitrović, “Reliable method for driving events recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 2, pp. 198–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan, “Mobile phone based drunk driving detection,” in Proceedings of the 4th International Conference on Pervasive Computing Technologies for Healthcare, pp. 1–8, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. K. C. Baldwin, D. D. Duncan, and S. K. West, “The driver monitor system: a means of assessing driver performance,” Johns Hopkins APL Technical Digest, vol. 25, no. 3, pp. 269–277, 2004. View at Scopus
  45. G. Ten Holt, M. Reinders, and E. Hendriks, “Multi-dimensional dynamic time warping for gesture recognition,” in Proceedings of the Conference of the Advanced School for Computing and Imaging (ASCI '07), 2007.
  46. R. Muscillo, S. Conforto, M. Schmid, P. Caselli, and T. D'Alessio, “Classification of motor activities through derivative dynamic time warping applied on accelerometer data,” in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '07), pp. 4930–4933, 2007.
  47. J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uWave: accelerometer-based personalized gesture recognition and its applications,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 657–675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Kela, P. Korpipää, and J. Mäntyjärvi, “Accelerometer-based gesture control for a design environment,” Personal and Ubiquitous Computing, vol. 10, no. 5, pp. 285–299, 2006.
  49. E. Miluzzo, A. Varshavsky, S. Balakrishnan, et al., “Tapprints: your finger taps have fingerprints,” in Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 323–336, Low Wood Bay, Lake District, UK, 2012.
  50. L. Cai and H. H. Chen, “TouchLogger: inferring keystrokes on touch screen from smartphone motion,” in Proceedings of the 6th USENIX Conference on Hot Topics in Security, p. 9, San Francisco, Calif, USA, 2011.
  51. E. Owusu, J. Han, S. Das, et al., “ACCessory: password inference using accelerometers on smartphones,” in Proceedings of the 12th Workshop on Mobile Computing Systems & Applications, pp. 1–6, San Diego, Calif, USA, 2012.
  52. L. Cai, S. Machiraju, and H. Chen, “Defending against sensor-sniffing attacks on mobile phones,” in Proceedings of the 1st ACM Workshop on Networking, Systems, and Applications for Mobile Handhelds, pp. 31–36, Barcelona, Spain, 2009.
  53. S. Agrawal, I. Constandache, and S. Gaonkar, “PhonePoint pen: using mobile phones to write in air,” in Proceedings of the 1st ACM Workshop on Networking, Systems, and Applications for Mobile Handhelds, pp. 1–6, Barcelona, Spain, 2009.
  54. B. Clarkson, K. Mase, and A. Pentland, “Recognizing user context via wearable sensors,” in Proceedings of the 4th Intenational Symposium on Wearable Computers, pp. 69–75, October 2000. View at Scopus
  55. S. Gaonkar, J. Li, and R. R. Choudhury, “Micro-Blog: sharing and querying content through mobile phones and social participation,” in Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, pp. 174–186, Breckenridge, Colo, USA, 2008.
  56. E. Miluzzo, N. D. Lane, and K. Fodor, “Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application,” in Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp. 337–350, Raleigh, NC, USA, 2008.
  57. M. Azizyan and R. R. Choudhury, “SurroundSense: mobile phone localization using ambient sound and light,” SIGMOBILE Mobile Computing and Communications Review, vol. 13, no. 1, pp. 69–72, 2009.
  58. C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan, “BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices,” in Proceedings of the 5th ACM International Conference on Embedded Networked Sensor Systems (SenSys '07), pp. 1–14, Sydney, Australia, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Mandai, C. V. Lopes, T. Givargis, A. Haghighat, R. Jurdak, and P. Baldi, “Beep: 3D indoor positioning using audible sound,” in Proceedings of the 2nd IEEE Consumer Communications and Networking Conference (CCNC '05), pp. 348–353, January 2005. View at Scopus
  60. C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan, “BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices,” in Proceedings of the 5th ACM International Conference on Embedded Networked Sensor Systems (SenSys '07), pp. 397–398, Sydney, Australia, November 2007. View at Publisher · View at Google Scholar · View at Scopus