About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2013 (2013), Article ID 472675, 10 pages
http://dx.doi.org/10.1155/2013/472675
Research Article

Concurrent Fault Diagnosis for Rotating Machinery Based on Vibration Sensors

1Guangdong Petrochemical Equipment Fault Diagnosis Key Laboratory, Guangdong University of Petrochemical Technology, Maoming 525000, China
2School of Automation, Guangdong University of Technology, Guangzhou 510006, China
3Department of Automation, Tsinghua University, Beijing 100084, China

Received 10 January 2013; Accepted 5 April 2013

Academic Editor: Zhangbing Zhou

Copyright © 2013 Qing-Hua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. G. Lei, Z. J. He, and Y. Y. Zi, “A new approach to intelligent fault diagnosis of rotating machinery,” Expert Systems with Applications, vol. 35, no. 4, pp. 1593–1600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lin and L. S. Qu, “Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis,” Journal of Sound and Vibration, vol. 234, no. 1, pp. 135–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. X. S. Si, C. H. Hu, J. B. Yang, and Q. Zhang, “On the dynamic evidential reasoning algorithm for fault prediction,” Expert Systems with Applications, vol. 38, no. 5, pp. 5061–5080, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. X. S. Si, C. H. Hu, J. B. Yang, and Z. J. Zhou, “A new prediction model based on belief rule base for system behavior prediction,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 4, pp. 456–471, 2011.
  5. G. Z. Dai, Q. Pan, S. Y. Zhang, and H. C. Zhang, “The developments and problems in evidence reasoning,” Control Theory and Applications, vol. 16, no. 4, pp. 465–469, 1999. View at Scopus
  6. P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “An artificial immune system architecture for computer security applications,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 3, pp. 252–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. X. F. Fan and M. J. Zuo, “Fault diagnosis of machines based on D-S evidence theory. Part 2: application of the improved D-S evidence theory in gearbox fault diagnosis,” Pattern Recognition Letters, vol. 27, no. 5, pp. 377–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. H. Han, F. Wang, X. D. Hao, and S. Liu, “Fault diagnosis of turbine vibration based on artificial immune algorithm,” Journal of North China Electric Power University, vol. 37, no. 3, pp. 38–42, 2010.
  9. Y. Peng, C. L. Zhang, H. Zhao, and X. Yue, “Fault diagnosis of nuclear equipment based on artificial immune system,” Nuclear Power Engineering, vol. 29, no. 2, pp. 124–128, 2008. View at Scopus
  10. P. Zhao and Z. S. Wang, “Aero-engine rotor fault diagnodis based on dempster-shafer evidential theory,” Machinery Design & Manufacture, vol. 1, pp. 136–137, 2008.
  11. Q. H. Meng, X. J. Zhou, and Y. C. Wu, “Vehicle fault diagnosis based on wavelet-immune system,” Automotive Engineering, vol. 26, no. 5, pp. 619–622, 2004.
  12. M. A. K. Jaradat and R. Langari, “A hybrid intelligent system for fault detection and sensor fusion,” Applied Soft Computing, vol. 9, no. 1, pp. 415–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Aydin, M. Karakose, and E. Akin, “A multi-objective artificial immune algorithm for parameter optimization in support vector machine,” Applied Soft Computing, vol. 11, no. 1, pp. 120–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. J. Wang, S. X. Xia, and Q. Niu, “Artificial immune particle swarm optimization for fault diagnosis of mine hoist,” Acta Electronica Sinica, vol. 38, no. 2, pp. 94–98, 2010. View at Scopus
  15. W. L. Jiang, H. F. Niu, and S. Y. Liu, “Composite fault diagnosis method and its verification experiments,” Journal of Vibration and Shock, vol. 30, no. 6, pp. 176–180, 2011.
  16. Z. Wanjun, W. Xin, and L. Xinliang, “Mixed diagnosis tactic on fuzzy-immunity of gun-launched missile system,” Ordnance Industry Automation, vol. 31, no. 16, pp. 1–64, 2012.
  17. T. Yüksel and A. Sezgin, “Two fault detection and isolation schemes for robot manipulators using soft computing techniques,” Applied Soft Computing, vol. 10, no. 1, pp. 125–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sampath and R. Singh, “An integrated fault diagnostics model using genetic algorithm and neural networks,” Journal of Engineering for Gas Turbines and Power, vol. 128, no. 1, pp. 49–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Naresh, V. Sharma, and M. Vashisth, “An integrated neural fuzzy approach for fault diagnosis of transformers,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 2017–2024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Y. Wang and Q. J. Li, “Research on fault diagnosis expert system based on the neural network and the fault tree technology,” Procedia Engineering, vol. 31, pp. 1206–1210, 2012. View at Publisher · View at Google Scholar
  21. S. W. Fei and X. B. Zhang, “Fault diagnosis of power transformer based on support vector machine with genetic algorithm,” Expert Systems with Applications, vol. 36, no. 8, pp. 11352–11357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Ping, “Fault diagnosis for motor rotor based on KPCA-SVM,” Applied Mechanics and Materials, vol. 143-144, pp. 680–684, 2011. View at Publisher · View at Google Scholar
  23. H. Guo, L. B. Jack, and A. K. Nandi, “Feature generation using genetic programming with application to fault classification,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 35, no. 1, pp. 89–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Pan, W. Chen, and Y. Yun, “Fault diagnostic method of power transformers based on hybrid genetic algorithm evolving wavelet neural network,” IET Electric Power Applications, vol. 2, no. 1, pp. 71–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. V. T. Tran, B.-S. Yang, M.-S. Oh, and A. C. C. Tan, “Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference,” Expert Systems with Applications, vol. 36, no. 2, part 1, pp. 1840–1849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Samanta and C. Nataraj, “Use of particle swarm optimization for machinery fault detection,” Engineering Applications of Artificial Intelligence, vol. 22, no. 2, pp. 308–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. F. Dong, X. B. Wei, and T. Y. Wang, “A new method for diagnosis research of compound faults rotor in turbine generator set,” Turbine Technology, vol. 45, no. 6, pp. 377–379, 2003. View at Scopus
  28. S. Forrest and S. A. Hofmeyr, “Immunology as information processing,” in Design Principles for the Immune System and Other Distributed Autonomous Systems, L. A. Segel and I. R. Cohen, Eds., Oxford University Press, New York, NY, USA, 2000.
  29. Q. H. Zhang, A method of rotating machinery fault diagnosis based on non-dimension immune detectors. China. Utility Model Patent. CN101000276 2007-07-18.
  30. Q. H. Zhang, The research on unit fault diagnosis technology based on artificial immune system [Ph.D. dissertation], South China University of Technology, Guangzhou, China, 2004.
  31. A. P. Dempster, “Upper and lower probabilities induced by a multi-valued mapping,” Annals Mathematical Statistics, vol. 38, pp. 325–339, 1967. View at Publisher · View at Google Scholar
  32. G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 1976.
  33. J. P. Xuan, T. L. Shi, G. L. Liao, and W. X. Lai, “Classification feature extraction of multiple gear faults using genetic programming,” Journal of Vibration Engineering, vol. 19, no. 1, pp. 70–74, 2006. View at Scopus