About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2013 (2013), Article ID 631715, 7 pages
http://dx.doi.org/10.1155/2013/631715
Research Article

Feasibility Study on Crack Detection of Pipelines Using Piezoceramic Transducers

1School of Urban Construction, Yangtze University, Jingzhou, Hubei 434023, China
2Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA

Received 5 July 2013; Accepted 5 September 2013

Academic Editor: Ting-Hua Yi

Copyright © 2013 Guofeng Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Tapanes, “Fibre optic sensing solutions for real-time pipeline integrity monitoring,” Australian Pipeline Industry Association National Convention, 2001.
  2. H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Engineering Structures, vol. 26, no. 11, pp. 1647–1657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Z. Yan and L. S. Chyan, “Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring,” Optical Fiber Technology, vol. 16, no. 2, pp. 100–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Anastasopoulos, D. Kourousis, and K. Bollas, “Acoustic emission leak detection of liquid filled buried pipeline,” Journal of Acoustic Emission, vol. 27, pp. 27–39, 2009.
  5. D. Ozevin and J. Harding, “Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity,” International Journal of Pressure Vessels and Piping, vol. 92, pp. 63–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Mostafapour and S. Davoodi, “Analysis of leakage in high pressure pipe using acoustic emission method,” Applied Acoustics, vol. 74, no. 3, pp. 335–342, 2013.
  7. J. Okamoto, J. C. Adamowskia, M. S. G. Tsuzukia, F. Buiochia, and C. S. Camerinib, “Autonomous system for oil pipelines inspection,” Mechatronics, vol. 9, no. 7, pp. 731–743, 1999.
  8. E. Pan, J. Rogers, S. K. Datta, and A. H. Shah, “Mode selection of guided waves for ultrasonic inspection of gas pipelines with thick coating,” Mechanics of Materials, vol. 31, no. 3, pp. 165–174, 1999. View at Scopus
  9. H. Ravanbod, “Application of neuro-fuzzy techniques in oil pipeline ultrasonic nondestructive testing,” NDT & E International, vol. 38, no. 8, pp. 643–653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Hertlein, “Stress wave testing of concrete: a 25-year review and a peek into the future,” Construction and Building Materials, vol. 38, pp. 1240–1245, 2013.
  11. D. Vasić, V. Bilas, and D. Ambruš, “Pulsed eddy-current nondestructive testing of ferromagnetic tubes,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 4, pp. 1289–1294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. Nestleroth and R. J. Davis, “Application of eddy currents induced by permanent magnets for pipeline inspection,” NDT & E International, vol. 40, no. 1, pp. 77–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Keshwani and S. Bhattacharya, “Design and optimization of eddy current sensor for instrumented pipeline inspection gauge,” Sensor Review, vol. 28, no. 4, pp. 321–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Park, H. H. Cudney, and D. J. Inman, “Feasibility of using impedance-based damage assessment for pipeline structures,” Earthquake Engineering and Structural Dynamics, vol. 30, no. 10, pp. 1463–1474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Peairs, G. Park, and D. J. Inman, “Improving accessibility of the impedance-based structural health monitoring method,” Journal of Intelligent Material Systems and Structures, vol. 15, no. 2, pp. 129–140, 2004. View at Scopus
  16. K. K. Tseng and L. Wang, “Smart piezoelectric transducers for in situ health monitoring of concrete,” Smart Materials and Structures, vol. 13, no. 5, pp. 1017–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. F. Du, J. J. Hu, and C. Wan, “The study situation and analysis of oil & gas pipeline health detection,” in Proceedings of the International Conference on Pipelines and Trenchless Technology, pp. 551–560, 2012.
  18. G. Song, Y. L. Mo, K. Otero, and H. Gu, “Health monitoring and rehabilitation of a concrete structure using intelligent materials,” Smart Materials and Structures, vol. 15, no. 2, pp. 309–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Song, H. Gu, Y. L. Mo, T. T. C. Hsu, and H. Dhonde, “Concrete structural health monitoring using embedded piezoceramic transducers,” Smart Materials and Structures, vol. 16, no. 4, pp. 959–968, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Jun, “Scattering of harmonic anti-plane shear stress waves by a crack in functionally graded piezoelectric/piezomagnetic materials,” Acta Mechanica Solida Sinica, vol. 20, no. 1, pp. 75–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Song, H. Gu, and Y.-L. Mo, “Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review,” Smart Materials and Structures, vol. 17, no. 3, Article ID 033001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Laskar, H. Gu, Y. L. Mo, and G. Song, “Progressive collapse of a two-story reinforced concrete frame with embedded smart aggregates,” Smart Materials and Structures, vol. 18, no. 7, Article ID 075001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Yan, W. Sun, G. Song et al., “Health monitoring of reinforced concrete shear walls using smart aggregates,” Smart Materials and Structures, vol. 18, no. 4, Article ID 047001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Li, H. Gu, G. Song, R. Zheng, and Y. L. Mo, “Concrete structural health monitoring using piezoceramicbased wireless sensor networks,” Smart Structures and Systems, vol. 6, no. 5-6, pp. 731–748, 2010. View at Scopus
  25. H. Gu, Y. Moslehy, D. Sanders, G. Song, and Y. L. Mo, “Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations,” Smart Materials and Structures, vol. 19, no. 6, Article ID 065026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Moslehy, H. Gu, A. Belarbi, Y. L. Mo, and G. Song, “Smart aggregate based damage detection of circular RC columns under cyclic combined loading,” Smart Materials and Structures, vol. 19, no. 6, Article ID 065021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Liao and J. Wang, “Application of piezoceramic-based sensors to the structural health monitoring of bridge piers,” China Civil Engineering Journal, vol. 45, no. 2, pp. 197–201, 2012.
  28. X. Hong, H. Wang, T. Wang, G. Liu, Y. Li, and G. Song, “Dynamic cooperative identification based on synergetics for pipe structural health monitoring with piezoceramic transducers,” Smart Materials and Structures, vol. 22, no. 3, pp. 1–13, 2013.
  29. H.-N. Li, X.-Y. He, and T.-H. Yi, “Multi-component seismic response analysis of offshore platform by wavelet energy principle,” Coastal Engineering, vol. 56, no. 8, pp. 810–830, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T.-H. Yi, H.-N. Li, and M. Gu, “Characterization and extraction of global positioning system multipath signals using an improved particle-filtering algorithm,” Measurement Science and Technology, vol. 22, no. 7, Article ID 075101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. H. Yi, H. N. Li, and M. Gu, “Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer,” Smart Structures and Systems, vol. 11, no. 4, pp. 331–348, 2013.