About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2013 (2013), Article ID 725452, 10 pages
http://dx.doi.org/10.1155/2013/725452
Research Article

A Method to Analyze the Effectiveness of the Holes Healing Scheme in Wireless Sensor Network

1Department of Electrical Engineering, Institute of Computer and Communication Engineering, National Cheng Kung University, Tainan 70101, Taiwan
2Department of Electrical Engineering, Tung Fang Design University, Kaohsiung 82941, Taiwan
3Department of Computer Science and Information Engineering, National Pingtung Institute of Commerce, Pingtung 90004, Taiwan

Received 3 August 2012; Accepted 27 December 2012

Academic Editor: Lei Zhang

Copyright © 2013 Fu-Tian Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Hsin and M. Liu, “Self-monitoring of wireless sensor networks,” Computer Communications, vol. 29, no. 4, pp. 462–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Zhang, Y. Zhang, and Y. Fang, “A coverage inference protocol for wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 6, pp. 850–864, 2010. View at Publisher · View at Google Scholar
  3. P. K. Sahoo, J. Z. Tsai, and H. L. Ke, “Vector method based coverage hole recovery in wireless sensor networks,” in Proceedings of the 2nd International Conference on Communication Systems and Networks (COMSNETS '10), January 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. H. Lin and G. Xue, “Steiner tree problem with minimum number of Steiner points and bounded edge-length,” Information Processing Letters, vol. 69, no. 2, pp. 53–57, 1999. View at Scopus
  5. S. Lee and M. F. Younis, “EQAR: effective QoS-aware relay node placement algorithm for connecting disjoint wireless sensor subnetworks,” IEEE Transactions on Computers, vol. 60, no. 12, pp. 1772–1778, 2011. View at Publisher · View at Google Scholar
  6. S. Lee and M. Younis, “Optimized relay placement to federate segments in wireless sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 5, pp. 742–752, 2010. View at Publisher · View at Google Scholar
  7. L. C. Shiu, “The robot deployment scheme for wireless sensor networks in the concave region,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 7, pp. 2941–2953, 2010. View at Scopus
  8. T. W. Sung and C. S. Yang, “A cell-based sensor deployment strategy with improved coverage for mobility-assisted hybrid wireless sensor networks,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 5, no. 3, pp. 189–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Wang, G. Cao, and T. La Porta, “A bidding protocol for deploying mobile sensors,” in Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP '03), 2003.
  10. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd Annual Hawaii International Conference on System Siences (HICSS '00), January 2000. View at Scopus
  11. F. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation for ad hoc routing,” in Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom '01), Rome, Italy, July 2001.
  12. M. Chatterjee, S. K. Das, and D. Turgut, “WCA: a weighted clustering algorithms for mobile Ad Hoc networks,” Cluster Computing Journal, vol. 5, no. 2, pp. 193–204, 2002.
  13. C. Bettstetter and S. König, “On the message and time complexity of a distributed mobility-adaptive clustering in wireless ad hoc networks,” Proceedings of the European Wireless (EW '02), Florence, Italy, February 2002.
  14. D. Wang, B. Xie, and D. P. Agrawal, “Coverage and life-time optimization of wireless sensor network with gaussion distribution,” IEEE Transactions on Mobile Computing, vol. 7, no. 12, pp. 1444–1458, 2008. View at Publisher · View at Google Scholar
  15. C. F. Wang and C. C. Lee, “The optimization of sensor relocation in wireless mobile sensor networks,” Computer Communications, vol. 33, no. 7, pp. 828–840, 2009.
  16. Y. Mao, X. Zhou, and Y. Zhu, “An energy-aware coverage control protocol for wireless sensor networks,” in Proceedings of the IEEE International Conference on Information and Automation (ICIA '08), pp. 200–205, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Miyazaki, R. Kawano, Y. Endo, and D. Shitara, “A sensor network for surveillance of disaster-hit region,” in Proceedings of the 4th International Symposium on Wireless and Pervasive Computing (ISWPC '09), February 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Funke, “Topological hole detection in wireless sensor networks and its applications,” Proceedings of the Joint Workshop on Foundations of Mobile Computing, 2005.
  19. K. Li and Y. Wang, “Boundary recognition in sensor networks by building relative contours,” in Proceedings of the IEEE 34th Conference on Local Computer Networks (LCN '09), pp. 352–355, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. F. Huang, Y. C. Tseng, and H. L. Wu, “Distributed protocols for ensuring both coverage and connectivity of a wireless sensor network,” ACM Transactions on Sensor Networks, vol. 3, no. 1, Article ID 1210674, 2007. View at Publisher · View at Google Scholar · View at Scopus