About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2013 (2013), Article ID 796248, 11 pages
http://dx.doi.org/10.1155/2013/796248
Research Article

Wireless Sensor Networks for Smart Grid Applications: A Case Study on Link Reliability and Node Lifetime Evaluations in Power Distribution Systems

1Department of Computer Programming, Trakya University, 22020 Edirne, Turkey
2Department of Computer Engineering, Bahçeşehir University, 34353 Istanbul, Turkey
3Department of Control and Automation Engineering, Yildiz Technical University, 34220 Istanbul, Turkey

Received 7 October 2012; Revised 15 January 2013; Accepted 16 January 2013

Academic Editor: Yunghsiang S. Han

Copyright © 2013 Gurkan Tuna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. C. Gungor, L. Bin, and G. P. Hancke, “Opportunities and challenges of wireless sensor networks in smart grid,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3557–3564, 2010. View at Publisher · View at Google Scholar
  2. T. Sauter and M. Lobashov, “End-to-end communication architecture for smart grids,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1218–1228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. V. C. Gungor, D. Sahin, T. Kocak, C. Buccella, C. Cecati, and G. P. Hancke, “Smart grid technologies: communication technologies and standards,” IEEE Transactions on Industrial Informatics, vol. 7, no. 14, pp. 529–539, 2011. View at Publisher · View at Google Scholar
  4. S. M. Amin and B. F. Wollenberg, “Toward a Smart Grid: power delivery for the 21st century,” IEEE Power and Energy Magazine, vol. 3, no. 5, pp. 34–41, 2005. View at Publisher · View at Google Scholar
  5. DOE, “Communications requirements of smart grid technologies,” Tech. Rep., U.S. Department of Energy, Washington, DC, USA, 2010.
  6. Y. J. Kim, M. Thottan, V. Kolesnikov, and W. Lee, “A secure decentralized data-centric information infrastructure for smart grid,” IEEE Communications Magazine, vol. 48, no. 11, pp. 58–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. C. Gungor and F. C. Lambert, “A survey on communication networks for electric system automation,” Computer Networks, vol. 50, no. 7, pp. 877–897, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002. View at Publisher · View at Google Scholar
  9. C. Cano, B. Bellalta, A. Sfairopoulou, and M. Oliver, “Low energy operation in WSNs: a survey of preamble sampling MAC protocols,” Computer Networks, vol. 55, no. 15, pp. 3351–3363, 2011. View at Publisher · View at Google Scholar
  10. M. A. Yigitel, O. D. Incel, and C. Ersoy, “QoS-aware MAC protocols for wireless sensor networks: a survey,” Computer Networks, vol. 55, no. 8, pp. 1982–2004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,” in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN '05), pp. 457–462, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. G. Wan, Y. K. Tan, and C. Yuen, “Review on energy harvesting and energy management for sustainable wireless sensor networks,” in Proceedings of the IEEE International Conference on Communication Technology, pp. 362–317, 2011. View at Publisher · View at Google Scholar
  13. B. H. Calhoun, D. C. Daly, N. Verma et al., “Design considerations for ultra-low energy wireless microsensor nodes,” IEEE Transactions on Computers, vol. 54, no. 6, pp. 727–740, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof, “Energy harvesting for autonomous wireless sensor networks,” IEEE Solid-State Circuits Magazine, vol. 2, no. 2, pp. 29–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. K. Tan and S. K. Panda, “Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 4, pp. 1367–1377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. E. Logan, B. Hamelers, R. Rozendal et al., “Microbial fuel cells: methodology and technology,” Environmental Science and Technology, vol. 40, no. 17, pp. 5181–5192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. V. C. Gungor, D. Sahin, T. Kocak, et al., “A survey on smart grid potential applications and communication requirements,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 28–42, 2013. View at Publisher · View at Google Scholar
  18. Alcatel-Lucent, “Smart choices for the smart grid,” White Paper, Alcatel-Lucent, Murray Hill, NJ, USA, 2010.
  19. V. C. Gungor and G. Hancke, “Industrial wireless sensor networks: challenges, design principles, and technical approaches,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 4258–4265, 2009. View at Publisher · View at Google Scholar
  20. S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: survey and implications,” IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 443–461, 2011. View at Publisher · View at Google Scholar
  21. M. Erol-Kantarci and H. T. Mouftah, “Wireless multimedia sensor and actor networks for the next generation power grid,” Ad Hoc Networks, vol. 9, no. 4, pp. 542–551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Gomez and J. Paradells, “Wireless home automation networks: a survey of architectures and technologies,” IEEE Communications Magazine, vol. 48, no. 6, pp. 92–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. http://tools.ietf.org/id/draft-ietf-roll-rpl-19.html, 2011.
  24. J. W. Hui and D. E. Culler, “IPv6 in low-power wireless networks,” ProceedIngs of the IEEE, vol. 98, no. 11, pp. 1865–1878, 2010. View at Publisher · View at Google Scholar
  25. T. Clausen, U. Herberg, and M. Philipp, “A critical evaluation of the IPv6 routing protocol for low power and lossy networks (RPL),” in Proceedings of the 7th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob '11), pp. 365–372, 2011. View at Publisher · View at Google Scholar
  26. J. Tripathi, J. C. de Oliveira, and J. P. Vasseur, “Applicability study of RPL with local repair in smart grid substation networks,” in Proceedings of the 1st IEEE International Conference on Smart Grid Communications, pp. 262–267, 2010. View at Publisher · View at Google Scholar
  27. http://www.wave2m.com/the-specification/the-platform-in-depth?view=item, 2012.
  28. http://www.ieee802.org/15/pub/TG4g.html, 2011.
  29. “A standardized and flexible IPv6 architecture for fieldarea networks,” Tech. Rep., 2011, http://www.cisco.com/web/strategy/docs/energy/ip_arch_sg_wp.pdf.
  30. http://www.ieee802.org/15/pub/TG4k.html, 2011.
  31. https://mentor.ieee.org/802.15/dcn/11/15-11-0607-00-004k-a-mac-proposal-for-lecim.pdf, 2011.
  32. M. Zuniga and B. Krishnamachari, “An analysis of unreliability and asymmetry in low-power wireless links,” ACM Transactions on Sensor Networks, vol. 3, no. 2, pp. 1–30, 2007. View at Publisher · View at Google Scholar
  33. “Realistic Wireless Link Quality Model and Generator, Autonomous Network Research Group (ANRG), University of Southern California,” 2012, http://anrg.usc.edu/www/index.php/Downloads.
  34. D. Jung, T. Teixeira, A. Barton-Sweeney, and A. Savvides, “Model-based design exploration of wireless sensor node lifetimes,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4373, pp. 277–292, 2007. View at Scopus
  35. F. Wang and J. Liu, “Duty-cycle-aware broadcast in wireless sensor networks,” in Proceedings of the IEEE (INFOCOM '09), pp. 468–476, 2009. View at Publisher · View at Google Scholar
  36. D. Jung, T. Teixeira, and A. Savvides, “Sensor node lifetime analysis: models and tools,” ACM Transactions on Sensor Networks, vol. 5, no. 1, p. 3, 2009. View at Publisher · View at Google Scholar
  37. R. Moghe, Y. Yang, F. Lambert, and D. Divan, “A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications,” in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE '09), pp. 3550–3557, San Jose, Calif, USA, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Bereketli and O. B. Akan, “Communication coverage in wireless passive sensor networks,” IEEE Communications Letters, vol. 13, no. 2, pp. 133–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, “Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy,” ACS Nano, vol. 4, no. 7, pp. 3647–3652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Tuna and K. Gulez, “Energy harvesting techniques for industrial wireless sensor networks,” in Industrial Wireless Sensor Networks: Applications, Protocols, Standards, and Products, V. C. Gungor and G. P. Hancke, Eds., CRC Press, New York, NY, USA, 2013.
  41. D. Niyato, M. M. Rashid, and V. K. Bhargava, “Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management,” IEEE Wireless Communications, vol. 14, no. 4, pp. 90–96, 2007. View at Publisher · View at Google Scholar · View at Scopus