About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2013 (2013), Article ID 958912, 18 pages
http://dx.doi.org/10.1155/2013/958912
Research Article

A Novel Lightness Localization Algorithm Based on Anchor Nodes Equilateral Triangle Layout in WSNs

College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

Received 24 July 2012; Revised 13 November 2012; Accepted 10 December 2012

Academic Editor: Wei Meng

Copyright © 2013 Dazhou Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. F. Akyildiz and M. C. Vuran, Wireless Sensor Networks, John Wiley & Sons, 2010.
  2. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless sensor networks for habitat monitoring,” in Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 88–97, Atlanta, Ga, USA, September 2002. View at Scopus
  3. Q. Yang and Z. J. Wang, “Study on localization algorithms for large scale wireless sensor network,” Transducer and Microsystem Technologies, vol. 26, no. 2, pp. 33–36, 2007.
  4. X. Wang, D. W. Bi, L. Ding, and S. Wang, “Agent collaborative target localization and classification in wireless sensor networks,” Sensors, vol. 7, no. 8, pp. 1359–1386, 2007. View at Scopus
  5. G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization techniques,” Computer Networks, vol. 51, no. 10, pp. 2529–2553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Wang, V. Srinivasan, B. Wang, and K. C. Chua, “Coverage for target localization in wireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 2, pp. 667–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Qian, K. Lu, and D. Tipper, “A design for secure and survivable wireless sensor networks,” IEEE Wireless Communications, vol. 14, no. 5, pp. 30–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. You, Q. Han, D. Lieckfeldt, J. Salzmann, and D. Timmermann, “Virtual position based geographic routing for wireless sensor networks,” Computer Communications, vol. 33, no. 11, pp. 1255–1265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. F. Younis, K. Ghumman, and M. Eltoweissy, “Location-aware combinatorial key management scheme for clustered sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 8, pp. 865–882, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Baggio and K. Langendoen, “Monte Carlo localization for mobile wireless sensor networks,” Ad Hoc Networks, vol. 6, no. 5, pp. 718–733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Chehri, P. Fortier, and P. Martin Tardif, “UWB-based sensor networks for localization in mining environments,” Ad Hoc Networks, vol. 7, no. 5, pp. 987–1000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Haibo, W. Yingna, and P. Bao, “A localization method of wireless sensor network based on two-hop focus,” Procedia Engineering, vol. 15, pp. 2021–2025, 2011. View at Publisher · View at Google Scholar
  13. J. Du and X. Zhang, “Research and improvement of localization algorithm for wireless sensor networks,” Energy Procedia, vol. 13, pp. 8969–8975, 2011. View at Publisher · View at Google Scholar
  14. M. Huang, S. Chen, and Y. Wang, “Minimum cost localization problem in wireless sensor networks,” Ad Hoc Networks, vol. 9, no. 3, pp. 387–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Aksu, D. Aksoy, and I. Korpeoglu, “A study of localization metrics: evaluation of position errors in wireless sensor networks,” Computer Networks, vol. 55, no. 15, pp. 3562–3577, 2011. View at Publisher · View at Google Scholar
  16. P. Shunmuga Perumal and V. Rhymend Uthariaraj, “Novel localization of sensor nodes in wireless sensor networks using co-ordinate signal strength database,” Procedia Engineering, vol. 30, pp. 662–668, 2012. View at Publisher · View at Google Scholar
  17. B. Huang, C. Yu, and B. D. Anderson, “Analyzing localization errors in one-dimensional sensor networks,” Signal Processing, vol. 92, no. 2, pp. 427–438, 2012. View at Publisher · View at Google Scholar
  18. W. Hwa Liao, K. Ping Shih, and Y. Chee Lee, “A localization protocol with adaptive power control in wireless sensor networks,” Computer Communications, vol. 31, no. 10, pp. 2496–2504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Ampeliotis and K. Berberidis, “Low complexity multiple acoustic source localization in sensor networks based on energy measurements,” Signal Processing, vol. 90, no. 4, pp. 1300–1312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Niculescu and B. Nath, “DV based positioning in ad hoc networks,” Journal of Telecommunication Systems, vol. 22, no. 1–4, pp. 267–280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-free localization schemes for large scale sensor networks,” in Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom '03), pp. 81–95, ACM, New York, NY, USA, September 2003. View at Scopus
  22. Y. Zhou, X. Ao, and S. X. Xia, “An improved APIT node self-localization algorithm in WSN,” in Proceedings of the 7th World Congress on Intelligent Control and Automation (WCICA '08), IEEE, Ed., pp. 7582–7586, IEEE, New York, NY, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Z. Wang and H. G. Jin, “Improvement on APIT localization algorithms for wireless sensor networks,” in Proceedings of the International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC '09), Z. Hu and W. Li, Eds., pp. 719–723, IEEE Computer Society, Los Alamitos, CA, USA, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Q. Li, H. Gao, and L. L. Lv, “An improved APIT algorithm based on direction searching,” in Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '09), IEEE, Ed., pp. 3268–3271, IEEE, New York, NY, USA, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. X. F. Feng and H. B. Qi, “Improvement and simulation for a localization based on APIT,” in Proceedings of the International Conference on Computer Technology and Development (ICCTD '09), IEEE Computer Society, Ed., pp. 68–72, IEEE Computer Society, Los Alamitos, CA, USA, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Jia and J. Q. Fu, “Research on APIT and Monte Carlo method of localization algorithm for wireless sensor networks,” in Life System Modeling and Intelligent Computing, K. Li, M. R. Fei, and L. Jia, Eds., pp. 128–137, Springer, Berlin, Germany, 2010.
  27. X. Y. Li, I. Stojmenovic, and Y. Wang, “Partial delaunay triangulation and degree limited localized bluetooth scatternet formation,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 4, pp. 350–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Font-Llagunes and J. A. Batlle, “Consistent triangulation for mobile robot localization using discontinuous angular measurements,” Robotics and Autonomous Systems, vol. 57, no. 9, pp. 931–942, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Tekdas and V. Isler, “Sensor placement for triangulation-based localization,” IEEE Transactions on Automation Science and Engineering, vol. 7, no. 3, pp. 681–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor localization for very small devices,” IEEE Personal Communications, vol. 7, no. 5, pp. 28–34, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, “Weighted centroid localization in Zigbee-based sensor networks,” in Proceedings of IEEE International Symposium on Intelligent Signal Processing (WISP '07), J. U. Urena and J. J. G. Dominguez, Eds., pp. 1–6, IEEE, New York, NY, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Kong, X. Yang, and X. Dai, “Research of an improved weighted centroid localization algorithm and anchor distribution,” in Proceedings of the 2nd International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC '10), IEEE, Ed., pp. 400–405, IEEE, New York, NY, USA, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Jun, P. Urriza, H. Yuxing, and D. Cabric, “Weighted centroid localization algorithm: theoretical analysis and distributed implementation,” IEEE Transactions on Wireless Communications, vol. 10, no. 10, pp. 3403–3413, 2011. View at Publisher · View at Google Scholar
  34. K. Yedavalli, B. Krishnamachari, S. Ravulat, and B. Srinivasan, “Ecolocation: a sequence based technique for RF localization in wireless sensor networks,” in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN '05), IEEE, Ed., pp. 285–292, IEEE, New York, NY, USA, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Yu, C. X. Jiang, X. J. Zhao, et al., “Sequence Based localization algorithm with improved correlation metric and dynamic centroid,” Science China Information Sciences, vol. 54, no. 11, pp. 2349–2358, 2011. View at Publisher · View at Google Scholar
  36. K. Yedavalli and B. Krishnamachari, “Sequence-based localization in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 7, no. 1, pp. 81–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Liu and J. Chen, “A new sequence-based iterative localization in wireless sensor networks,” in Proceedings of the International Conference on Information Engineering and Computer Science (ICIECS '09), pp. 1–4, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C.-C Hsiao and Y.-J. Tsai, “Node deployment strategy for WSN-based node-sequence localization,” in Proceedings of the 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP '11), pp. 259–264, December 2011.
  39. D. Blanco, B. L. Boada, and L. Moreno, “Localization by Voronoi diagrams correlation,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA '01), pp. 4232–4237, May 2001. View at Scopus
  40. A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “A Voronoi approach for scalable and robust DV-hop localization system for sensor networks,” in Proceedings of the 16th International Conference on Computer Communications and Networks (ICCCN '07), pp. 497–502, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. Loureiro, “DV-Loc: a scalable localization protocol using Voronoi diagrams for wireless sensor networks,” IEEE Wireless Communications, vol. 16, no. 2, pp. 50–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Li and H. C. Kao, “Distributed K-coverage self-location estimation scheme based on Voronoi diagram,” IET Communications, vol. 4, no. 2, pp. 167–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Ampeliotis and K. Berberidis, “Sorted order-K Voronoi diagrams for model-independent source localization in wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 58, no. 1, pp. 426–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Biswas, T. C. Lian, T. C. Wang, and Y. Ye, “Semidefinite programming based algorithms for sensor network localization,” ACM Transactions on Sensor Networks, vol. 2, no. 2, pp. 188–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. K. W. K. Lui, W. K. Ma, H. C. So, and F. K. W. Chan, “Semi-definite programming algorithms for sensor network node localization with uncertainties in anchor positions and/or propagation speed,” IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 752–763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Lee, W. Chung, and E. Kim, “A new range-free localization method using quadratic programming,” Computer Communications, vol. 34, no. 8, pp. 998–1010, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Kim, J. G. Lee, and G. I. Jee, “The interior-point method for an optimal treatment of bias in trilateration location,” IEEE Transactions on Vehicular Technology, vol. 55, no. 4, pp. 1291–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. Z. Mohamed, A. L. Mohamed, and B. Ridha, “Hybrid TOA/AOA approximate maximum likelihood mobile localization,” Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 1–5, 2010.
  49. Y. Cheng, X. Wang, T. Caelli, et al., “Optimal nonlinear estimation for localization of wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 5674–5685, 2011. View at Publisher · View at Google Scholar
  50. Z. Zhong and T. He, “Achieving range-free localization beyond connectivity,” in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys '09), pp. 281–294, IEEE, New York, NY, USA, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Zhong and T. He, “Wireless sensor node localization by multisequence processing,” ACM Transactions on Embedded Computing Systems, vol. 11, no. 1, pp. 1–33, 2012.
  52. J. Jeong, S. Guo, T. He, and D. H. C. Du, “Autonomous passive localization algorithm for road sensor networks,” IEEE Transactions on Computers, vol. 60, no. 11, pp. 1622–1637, 2011. View at Publisher · View at Google Scholar
  53. M. Li and Y. Liu, “Rendered path: range-free localization in anisotropic sensor networks with holes,” IEEE/ACM Transactions on Networking, vol. 18, no. 1, pp. 320–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Tang, X. Hong, and P. G. Bradford, “Privacy-preserving secure relative localization in vehicular networks,” Security and Communication Networks, vol. 1, no. 3, pp. 195–204, 2008. View at Publisher · View at Google Scholar
  55. A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Secure localization algorithms for wireless sensor networks,” IEEE Communications Magazine, vol. 46, no. 4, pp. 96–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization techniques,” Computer Networks, vol. 51, no. 10, pp. 2529–2553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Chen, W. Trappe, L. J. Greenstein, and S. Liu, “Non-interactive localization of cognitive radios based on dynamic signal strength mapping,” in Proceedings of the 6th International Conference on Wireless On-Demand Network Systems and Services (WONS '09), pp. 85–92, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Leonardi, A. Mathias, and G. Galati, “Closed form localization algorithms for mode S wide area multilateration,” in Proceedings of the 6th European Radar Conference (EuRAD '09), pp. 73–76, October 2009. View at Scopus
  59. T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, 1999.