About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2013 (2013), Article ID 985410, 14 pages
http://dx.doi.org/10.1155/2013/985410
Research Article

A PSO-Optimized Minimum Spanning Tree-Based Topology Control Scheme for Wireless Sensor Networks

1College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
2College of Computer, National University of Defense Technology, Changsha 410073, China
3School of Computer Science, Colorado Technical University, Colorado Spring, CO 80907, USA

Received 6 January 2013; Accepted 15 March 2013

Academic Editor: Hongju Cheng

Copyright © 2013 Wenzhong Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Laukkarinen, J. Suhonen, and M. Hannikainen, “A survey of wireless sensor network abstraction for application development,” International Journal of Distributed Sensor Networks, vol. 2012, Article ID 740268, 12 pages, 2012. View at Publisher · View at Google Scholar
  2. N. Ababneh, “Performance evaluation of a topology control algorithm for wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 2010, Article ID 671385, 16 pages, 2010. View at Publisher · View at Google Scholar
  3. L. Lobello and E. Toscano, “An adaptive approach to topology management in large and dense real-time wireless sensor networks,” IEEE Transactions on Industrial Informatics, vol. 5, no. 3, pp. 314–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Zarifzadeh, N. Yazdani, and A. Nayyeri, “Energy-efficient topology control in wireless ad hoc networks with selfish nodes,” Computer Networks, vol. 56, no. 2, pp. 902–914, 2012. View at Publisher · View at Google Scholar
  5. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks,” Wireless Networks, vol. 8, no. 5, pp. 481–494, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Ding, C. Wang, and L. Xiao, “An adaptive partitioning scheme for sleep scheduling and topology control in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 9, pp. 1352–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd Annual Hawaii International Conference on System Siences (HICSS-33 '00), pp. 1–10, January 2000. View at Scopus
  8. S. Lindsay and C. Raghavendra, “PEGASIS: power-efficient gathering in sensor information systems,” in Proceedings of IEEE Aerospace Conference, pp. 1125–1130, 2002.
  9. L. Li, J. Y. Halpern, P. Bahl, Y. M. Wang, and R. Wattenhofer, “Analysis of a cone-based distributed topology control algorithm for wireless multi-hop networks,” in Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing, pp. 264–273, August 2001. View at Scopus
  10. V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp. 1333–1344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Li and J. Y. Halpern, “A minimum-energy path-preserving topology-control algorithm,” IEEE Transactions on Wireless Communications, vol. 3, no. 3, pp. 910–921, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Li, J. C. Hou, and L. Sha, “Design and analysis of an mst-based topology control algorithm,” in Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communication Scocieties, pp. 1702–1712, 2003.
  13. W. Z. Guo, J. H. Park, L. T. Yang, A. V. Vasilakos, N. X. Xiong, and G. L. Chen, “Design and analysis of a MST-based topology control scheme with PSO for wireless sensor networks,” in Proceedings of IEEE Asia-Pacific Services Computing Conference, pp. 360–367, December 2011.
  14. Y. H. Chen, “Polynomial time approximation schemes for the constrained minimum spanning tree problem,” Journal of Applied Mathematics, vol. 2012, Article ID 394721, 8 pages, 2012. View at Publisher · View at Google Scholar
  15. G. Zhou and M. Gen, “Genetic algorithm approach on multi-criteria minimum spanning tree problem,” European Journal of Operational Research, vol. 114, no. 1, pp. 141–152, 1999. View at Scopus
  16. J. Gottlieb, B. A. Julstrom, G. R. Raidl, and F. Rothlauf, “Prufer numbers: a poor representation of spanning trees for evolutionary search,” in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 343–350, 2001.
  17. N. Srinivas and K. Deb, “Multi-objective optimization using nondominated sorting in genetic algorithms,” Evolutional Computation, vol. 2, no. 3, pp. 221–248, 1994. View at Publisher · View at Google Scholar
  18. J. D. Knowles, Local-search and hybrid evolutionary algorithms for Pareto optimization [thesis], University of Reading, West Berkshire, UK, 2002.
  19. G. Chen, S. Chen, W. Guo, and H. Chen, “The multi-criteria minimum spanning tree problem based genetic algorithm,” Information Sciences, vol. 177, no. 22, pp. 5050–5063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithm test suites,” in Proceedings of the 14th ACM Symposium on Applied Computing (SAC '99), pp. 351–357, March 1999. View at Scopus
  21. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995. View at Scopus
  22. X. Li and X. Yao, “Cooperatively coevolving particle swarms for large scale optimization,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 2, pp. 210–224, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Jiang, Z. W. Zhao, S. Mou, Z. S. Wu, and Y. Luo, “Linear decision fusion under the control of constrained PSO for WSNs,” International Journal of Distributed Sensor Networks, vol. 2012, Article ID 871596, 11 pages, 2012. View at Publisher · View at Google Scholar
  24. Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, “Particle swarm optimization inspired probability algorithm for optimal camera network placement,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1402–1412, 2012. View at Publisher · View at Google Scholar
  25. Y. Shen, G. Wang, and C. Tao, “Particle swarm optimization with novel processing strategy and its application,” International Journal of Computational Intelligence Systems, vol. 4, no. 1, pp. 100–111, 2011. View at Scopus
  26. D. Caputo, F. Grimaccia, M. Mussetta, and R. E. Zich, “Genetical swarm optimization of multihop routes in wireless sensor networks,” Applied Computational Intelligence and Soft Computing, vol. 2010, Article ID 523943, 14 pages, 2010. View at Publisher · View at Google Scholar
  27. K. Zielinski, P. Weitkemper, R. Laur, and K. D. Kammeyer, “Optimization of power allocation for interference cancellation with particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 1, pp. 128–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimization in wireless-sensor networks: a brief survey,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 41, no. 2, pp. 262–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Z. Guo, H. L. Gao, G. L. Chen, and L. Yu, “Particle swarm optimization for the degree-constrained MST problem in WSN topology control,” in Proceedings of International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1793–1798, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu, and Y. H. Shi, “A novel set-based particle swarm optimization method for discrete optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 2, pp. 278–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Lapizco-Encinas, C. Kingsford, and J. Reggia, “Particle swarm optimization for multimodal combinatorial problems and its application to protein design,” in Proceedings of IEEE Congress on Evolutionary Computation, pp. 1–8, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. K. Pan, M. F. Tasgetiren, and Y. C. Liang, “A discrete particle swarm optimization algorithm for the permutation flowshop sequecing problem with Makespan criteria,” in Proceedings of the 26th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 19–31, 2006.
  33. S. H. Ling, F. Jiang, H. T. Nguyen, and K. Y. Chan, “Hybrid fuzzy logic-based particle swarm optimization for flow shop scheduling problem,” International Journal of Computational Intelligence and Applications, vol. 10, no. 3, pp. 335–356, 2011. View at Publisher · View at Google Scholar
  34. R. M. Aliguliyev, “Clustering techniques and discrete particle swarm optimization algorithm for multi-document summarization,” Computational Intelligence, vol. 26, no. 4, pp. 420–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Z. Guo, N. X. Xiong, A. V. Vasilakos, G. L. Chen, and C. L. Yu, “Distributed k-connected fault-tolerant topology control algorithms with PSO in future autonomic sensor systems,” International Journal of Sensor Networks, vol. 12, no. 1, pp. 53–62, 2012. View at Publisher · View at Google Scholar
  36. R. Balling, “The maximin fitness function: multi-objective city and regional planning,” in Proceedings of the 2nd International Conference on Evolutionary Multi-Criterion Optimization, vol. 2632, pp. 1–15, 2003.
  37. F. Neumann and M. Laumanns, “Speeding up approximation algorithms for NP-hard spanning forest problems by multi-objective optimization,” in Electronic Colloquium on Computational Complexity, Report no. 29, 2005.
  38. E. Zitzler, Evolutionary Algorithms for Multi-Objective Optimization: Methods and Applications, Swiss Federal Institute of Technology, Zurich, Switzerland, 1999.
  39. R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, John & Wiley Sons, New York, NY, USA, 1986.
  40. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength pareto evolutionary algorithm,” in Proceedings of Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems (EUROGEN '01), September 2001.
  41. W. J. Conover, Practical Nonparametric Statistics, John Wiley & Sons, New York, NY, USA, 3rd edition, 1999.
  42. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca, “Performance assessment of multiobjective optimizers: an analysis and review,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117–132, 2003. View at Publisher · View at Google Scholar · View at Scopus