About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2010 (2010), Article ID 108641, 7 pages
http://dx.doi.org/10.1155/2010/108641
Research Article

Prolonged Sleep Restriction Affects Glucose Metabolism in Healthy Young Men

1Brain and Work Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, 00250 Helsinki, Finland
2Department of Physiology, Institute of Biomedicine, University of Helsinki, PO Box 63, 00014 Helsinki, Finland
3Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, 00250 Helsinki, Finland

Received 31 July 2009; Revised 13 November 2009; Accepted 10 February 2010

Academic Editor: Deborah Suchecki

Copyright © 2010 Wessel M. A. van Leeuwen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Kronholm, T. Partonen, T. Laatikainen, et al., “Trends in self-reported sleep duration and insomnia-related symptoms in Finland from 1972 to 2005: a comparative review and re-analysis of Finnish population samples,” Journal of Sleep Research, vol. 17, no. 1, pp. 54–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. W. Rajaratnam and J. Arendt, “Health in a 24-h society,” Lancet, vol. 358, no. 9286, pp. 999–1005, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Patel and F. B. Hu, “Short sleep duration and weight gain: a systematic review,” Obesity, vol. 16, no. 3, pp. 643–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Schultes, S. Schmid, A. Peters, J. Born, and H. L. Fehm, “Sleep loss and the development of diabetes: a review of current evidence,” Experimental and Clinical Endocrinology and Diabetes, vol. 113, no. 10, pp. 563–567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Spiegel, R. Leproult, and E. Van Cauter, “Impact of sleep debt on metabolic and endocrine function,” Lancet, vol. 354, no. 9188, pp. 1435–1439, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Spiegel, E. Tasali, P. Penev, and E. Van Cauter, “Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite,” Annals of Internal Medicine, vol. 141, no. 11, pp. 846–850, 2004. View at Scopus
  7. C. A. Everson and W. R. Crowley, “Reductions in circulating anabolic hormones induced by sustained sleep deprivation in rats,” American Journal of Physiology, vol. 286, no. 6, pp. E1060–E1070, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Bodosi, J. Gardi, I. Hajdu, E. Szentirmai, F. Obal Jr., and J. M. Krueger, “Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation,” American Journal of Physiology, vol. 287, no. 5, pp. R1071–R1079, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Jean-Louis, D. F. Kripke, S. Ancoli-Israel, M. R. Klauber, and R. S. Sepulveda, “Sleep duration, illumination, and activity patterns in a population sample: effects of gender and ethnicity,” Biological Psychiatry, vol. 47, no. 10, pp. 921–927, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. W. M. A. van Leeuwen, M. Lehto, P. Karisola, et al., “Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP,” PLoS ONE, vol. 4, no. 2, article e4589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. E. Ferrie, M. J. Shipley, F. P. Cappuccio, et al., “A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort,” Sleep, vol. 30, no. 12, pp. 1659–1666, 2007. View at Scopus
  12. D. J. Gottlieb, S. Redline, F. J. Nieto, et al., “Association of usual sleep duration with hypertension: the Sleep Heart Health Study,” Sleep, vol. 29, no. 8, pp. 1009–1014, 2006. View at Scopus
  13. D. J. Gottlieb, N. M. Punjabi, A. B. Newman, et al., “Association of sleep time with diabetes mellitus and impaired glucose tolerance,” Archives of Internal Medicine, vol. 165, no. 8, pp. 863–868, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Stranges, F. P. Cappuccio, N.-B. Kandala, et al., “Cross-sectional versus prospective associations of sleep duration with changes in relative weight and body fat distribution: the Whitehall II study,” American Journal of Epidemiology, vol. 167, no. 3, pp. 321–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Bjorvatn, I. M. Sagen, N. Oyane, et al., “The association between sleep duration, body mass index and metabolic measures in the Hordaland Health Study,” Journal of Sleep Research, vol. 16, no. 1, pp. 66–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. K. Yaggi, A. B. Araujo, and J. B. McKinlay, “Sleep duration as a risk factor for the development of type 2 diabetes,” Diabetes Care, vol. 29, no. 3, pp. 657–661, 2006. View at Scopus
  17. K. Spiegel, K. Knutson, R. Leproult, E. Tasali, and E. Van Cauter, “Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes,” Journal of Applied Physiology, vol. 99, no. 5, pp. 2008–2019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Malouf and J. C. M. Brust, “Hypoglycemia: causes, neurological manifestations, and outcome,” Annals of Neurology, vol. 17, no. 5, pp. 421–430, 1985. View at Scopus
  19. The DECODE Study Group, “Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases?” Diabetes Care, vol. 26, no. 3, pp. 688–696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. H.-P. Guler, J. Zapf, and E. R. Froesch, “Short-term metabolic effects of recombinant human insulin-like growth factor I healthy adults,” New England Journal of Medicine, vol. 317, no. 3, pp. 137–140, 1987. View at Scopus
  21. R. Jacob, E. Barrett, G. Plewe, K. D. Fagin, and R. S. Sherwin, “Acute effects of insulin-like growth factor I on glucose and amino acid metabolism in the awake fasted rat. Comparison with insulin,” Journal of Clinical Investigation, vol. 83, no. 5, pp. 1717–1723, 1989. View at Scopus
  22. E. J. Schoenle, P. D. Zenobi, T. Torresani, E. A. Werder, M. Zachmann, and E. R. Froesch, “Recombinant human insulin-like growth factor I (rhIGF I) reduced hyperglycaemia in patients with extreme insulin resistance,” Diabetologia, vol. 34, no. 9, pp. 675–679, 1991. View at Scopus
  23. J. L. Leahy and K. M. Vandekerkhove, “Insulin-like growth factor-I at physiological concentrations is a potent inhibitor of insulin secretion,” Endocrinology, vol. 126, no. 3, pp. 1593–1598, 1990. View at Scopus
  24. P. D. Zenobi, S. Graf, H. Ursprung, and E. R. Froesch, “Effects of insulin-like growth factor-I on glucose tolerance, insulin levels, and insulin secretion,” Journal of Clinical Investigation, vol. 89, no. 6, pp. 1908–1913, 1992. View at Scopus
  25. T. L. S. Visscher and J. C. Seidell, “The public health impact of obesity,” Annual Review of Public Health, vol. 22, pp. 355–375, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. K. L. Knutson and E. Van Cauter, “Associations between sleep loss and increased risk of obesity and diabetes,” Annals of the New York Academy of Sciences, vol. 1129, pp. 287–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Horne, “Short sleep is a questionable risk factor for obesity and related disorders: statistical versus clinical significance,” Biological Psychology, vol. 77, no. 3, pp. 266–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. S. Marshall, N. Glozier, and R. R. Grunstein, “Is sleep duration related to obesity? A critical review of the epidemiological evidence,” Sleep Medicine Reviews, vol. 12, no. 4, pp. 289–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. D. Klok, S. Jakobsdottir, and M. L. Drent, “The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review,” Obesity Reviews, vol. 8, no. 1, pp. 21–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Zhang and P. J. Scarpace, “The role of leptin in leptin resistance and obesity,” Physiology and Behavior, vol. 88, no. 3, pp. 249–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Spiegel, R. Leproult, M. L'hermite-Baleriaux, G. Copinschi, P. D. Penev, and E. Van Cauter, “Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5762–5771, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Taheri, L. Lin, D. Austin, T. Young, and E. Mignot, “Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index,” PLoS Medicine, vol. 1, article e62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. K. Sinha, J. Sturis, J. Ohannesian, et al., “Ultradian oscillations of leptin secretion in humans,” Biochemical and Biophysical Research Communications, vol. 228, no. 3, pp. 733–738, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. D. A. Schoeller, L. K. Cella, M. K. Sinha, and J. F. Caro, “Entrainment of the diurnal rhythm of plasma leptin to meal timing,” Journal of Clinical Investigation, vol. 100, no. 7, pp. 1882–1887, 1997. View at Scopus
  35. R. V. Considine, M. K. Sinha, M. L. Heiman, et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Korbonits, P. J. Trainer, J. A. Little, et al., “Leptin levels do not change acutely with food administration in normal or obese subjects, but are negatively correlated with pituitary-adrenal activity,” Clinical Endocrinology, vol. 46, no. 6, pp. 751–757, 1997. View at Scopus
  37. P. W. Franks, I. S. Farooqi, J. Luan, et al., “Does physical activity energy expenditure explain the between-individual variation in plasma leptin concentrations after adjusting for differences in body composition?” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3258–3263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Duclos, J.-B. Corcuff, A. Ruffie, P. Roger, and G. Manier, “Rapid leptin decrease in immediate post-exercise recovery,” Clinical Endocrinology, vol. 50, no. 3, pp. 337–342, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. D. P. C. Van Aggel-Leijssen, M. A. Van Baak, R. Tenenbaum, L. A. Campfield, and W. H. M. Saris, “Regulation of average 24 h human plasma leptin level the influence of exercise and physiological changes in energy balance,” International Journal of Obesity, vol. 23, no. 2, pp. 151–158, 1999. View at Scopus
  40. G. M. Lord, “Leptin as a proinflammatory cytokine,” Contributions to Nephrology, vol. 151, pp. 151–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Matarese, S. Moschos, and C. S. Mantzoros, “Leptin in immunology,” Journal of Immunology, vol. 174, no. 6, pp. 3137–3142, 2005. View at Scopus
  42. C. B. Saper, T. C. Chou, and J. K. Elmquist, “The need to feed: homeostatic and hedonic control of eating,” Neuron, vol. 36, no. 2, pp. 199–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. B. Saper, G. Cano, and T. E. Scammell, “Homeostatic, circadian, and emotional regulation of sleep,” Journal of Comparative Neurology, vol. 493, no. 1, pp. 92–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. V. Nedeltcheva, J. M. Kilkus, J. Imperial, K. Kasza, D. A. Schoeller, and P. D. Penev, “Sleep curtailment is accompanied by increased intake of calories from snacks,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 126–133, 2009. View at Publisher · View at Google Scholar · View at Scopus