About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2010 (2010), Article ID 270832, 12 pages
http://dx.doi.org/10.1155/2010/270832
Review Article

Sleep and Metabolism: An Overview

Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Brody School of Medicine, Greenville, 27834 NC, USA

Received 29 September 2009; Revised 2 February 2010; Accepted 28 April 2010

Academic Editor: Jessica A. Mong

Copyright © 2010 Sunil Sharma and Mani Kavuru. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Webb and H. W. Agnew, “Are we chronically sleep deprived?” Bulletin of the Psychonomic Society, vol. 6, p. 47, 1975.
  2. National Sleep Foundation, Sleep in America Poll2003, National Sleep Foundation, Washington, DC, USA, 2003.
  3. National Center for Health Statistics, “QuickStats: percentage of adults who reported an average of 66 h of sleep per 24-h period, by sex and age group -United States, 1985 and 2004,” Morbidity and Mortality Weekly Report, 2005.
  4. J. M. Siegel, “Sleep,” in Encarta Encyclopedia, 1999-present.
  5. M. M. Ohayon, M. A. Carskadon, C. Guilleminault, and M. V. Vitiello, “Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan,” Sleep, vol. 27, no. 7, pp. 1255–1273, 2004.
  6. J. M. Siegel, “Why we sleep,” Scientific American, vol. 289, no. 5, pp. 92–97, 2003.
  7. L. Ramanathan, S. Gulyani, R. Nienhuis, and J. M. Siegel, “Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem,” NeuroReport, vol. 13, no. 11, pp. 1387–1390, 2002.
  8. D. R. Brebbia and K. Z. Altshuler, “Oxygen consumption rate and electroencephalographs stage of sleep,” Science, vol. 150, no. 3703, pp. 1621–1623, 1965.
  9. G. R. Goldberg, A. M. Prentice, H. L. Davies, and P. R. Murgatroyd, “Overnight and basal metabolic rates in men and women,” European Journal of Clinical Nutrition, vol. 42, no. 2, pp. 137–144, 1988.
  10. E. Van Cauter, K. S. Polonsky, and A. J. Scheen, “Roles of circadian rhythmicity and sleep in human glucose regulation,” Endocrine Reviews, vol. 18, no. 5, pp. 716–738, 1997. View at Publisher · View at Google Scholar
  11. E. Van Cauter, M. Kerkhofs, A. Caufriez, A. Van Onderbergen, M. O. Thorner, and G. Copinschi, “A quantitative estimation of growth hormone secretion in normal man: reproducibility and relation to sleep and time of day,” Journal of Clinical Endocrinology and Metabolism, vol. 74, no. 6, pp. 1441–1450, 1992. View at Publisher · View at Google Scholar
  12. E. Van Cauter and F. W. Turck, “Endocrine and other biological rhythms,” in Endocrinology, L. J. DeGoot, Ed., pp. 2487–2548, Saunders, Philadelphia, Pa, USA, 1994.
  13. A. J. Scheen, M. M. Byrne, L. Plat, R. Leproult, and E. Van Cauter, “Relationships between sleep quality and glucose regulation in normal humans,” American Journal of Physiology, vol. 271, no. 2, pp. E261–E270, 1996.
  14. R. Leproult, G. Copinschi, O. Buxton, and E. Van Cauter, “Sleep loss results in an elevation of cortisol levels the next evening,” Sleep, vol. 20, no. 10, pp. 865–870, 1997.
  15. S. M. Hampton, L. M. Morgan, and L. M. Morgan, “Postprandial hormone and metabolic responses in simulated shift work,” Journal of Endocrinology, vol. 151, no. 2, pp. 259–267, 1996.
  16. D. C. O. Ribeiro, S. M. Hampton, L. Morgan, S. Deacon, and J. Arendt, “Altered postprandial hormone and metabolic responses in a simulated shift work environment,” Journal of Endocrinology, vol. 158, no. 3, pp. 305–310, 1998.
  17. K. Spiegel, R. Leproult, and E. Van Cauter, “Metabolic and endocrine changes,” in Sleep Deprivation: Basic Science, Physiology, and Behavior, C. Kushida, Ed., vol. 192, pp. 293–318, Marcel Dekker, New York, NY, USA, 2005.
  18. K. Spiegel, R. Leproult, E. F. Colecchia, M. L'Hermite-Balériaux, Z. Nie, G. Copinschi, and E. Van Cauter, “Adaptation of the 24-h growth hormone profile to a state of sleep debt,” American Journal of Physiology, vol. 279, no. 3, pp. R874–R883, 2000.
  19. T. VanHelder, J. D. Symons, and M. W. Radomski, “Effects of sleep deprivation and exercise on glucose tolerance,” Aviation Space and Environmental Medicine, vol. 64, no. 6, pp. 487–492, 1993.
  20. K. Spiegel, R. Leproult, and E. Van Cauter, “Impact of sleep debt on metabolic and endocrine function,” The Lancet, vol. 354, no. 9188, pp. 1435–1439, 1999. View at Publisher · View at Google Scholar
  21. K. Spiegel, K. Knutson, R. Leproult, E. Tasali, and E. Van Cauter, “Sleep loss: a novel risk factor for insulin resistance and type 2 diabetes,” Journal of Applied Physiology, vol. 99, no. 5, pp. 2008–2019, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. K. Spiegel, R. Leproult, M. L'Hermite-Balériaux, G. Copinschi, P. D. Penev, and E. Van Cauter, “Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5762–5771, 2004. View at Publisher · View at Google Scholar · View at PubMed
  23. A. N. Vgontzas, E. Zoumakis, E. O. Bixler, H.-M. Lin, H. Follett, A. Kales, and G. P. Chrousos, “Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 5, pp. 2119–2126, 2004. View at Publisher · View at Google Scholar
  24. W. T. Shearer, J. M. Reuben, and J. M. Reuben, “Soluble TNF-α receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight,” Journal of Allergy and Clinical Immunology, vol. 107, no. 1, pp. 165–170, 2001. View at Publisher · View at Google Scholar · View at PubMed
  25. H. K. Meier-Ewert, P. M. Ridker, N. Rifai, M. M. Regan, N. J. Price, D. F. Dinges, and J. M. Mullington, “Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk,” Journal of the American College of Cardiology, vol. 43, no. 4, pp. 678–683, 2004. View at Publisher · View at Google Scholar · View at PubMed
  26. A. F. Amos, D. J. McCarty, and P. Zimmet, “The rising global burden of diabetes and its complications: estimates and projections to the year 2010,” Diabetic Medicine, vol. 14, no. 12, supplement 5, pp. S7–S85, 1997.
  27. N. T. Ayas, D. P. White, and D. P. White, “A prospective study of self-reported sleep duration and incident diabetes in women,” Diabetes Care, vol. 26, no. 2, pp. 380–384, 2003. View at Publisher · View at Google Scholar
  28. L. Mallon, J.-E. Broman, and J. Hetta, “High incidence of diabetes in men with sleep complaints or short sleep duration: a 12-year follow-up study of a middle-aged population,” Diabetes Care, vol. 28, no. 11, pp. 2762–2767, 2005. View at Publisher · View at Google Scholar
  29. H. K. Yaggi, A. B. Araujo, and J. B. McKinlay, “Sleep duration as a risk factor for the development of type 2 diabetes,” Diabetes Care, vol. 29, no. 3, pp. 657–661, 2006.
  30. S. M. Gale, V. D. Castracane, and C. S. Mantzoros, “Energy homeostasis, obesity and eating disorders: recent advances in endocrinology,” Journal of Nutrition, vol. 134, no. 2, pp. 295–298, 2004.
  31. C. Chin-Chance, K. S. Polonsky, and D. A. Schoeller, “Twenty-four-hour leptin levels respond to cumulative short-term energy imbalance and predict subsequent intake,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 8, pp. 2685–2691, 2000. View at Publisher · View at Google Scholar
  32. A. Dzaja, M. A. Dalal, H. Himmerich, M. Uhr, T. Pollmächer, and A. Schuld, “Sleep enhances nocturnal plasma ghrelin levels in healthy subjects,” American Journal of Physiology, vol. 286, no. 6, pp. E963–E967, 2004. View at Publisher · View at Google Scholar · View at PubMed
  33. D. A. Schoeller, L. K. Cella, M. K. Sinha, and J. F. Caro, “Entrainment of the diurnal rhythm of plasma leptin to meal timing,” Journal of Clinical Investigation, vol. 100, no. 7, pp. 1882–1887, 1997.
  34. M. I. C. Alonso-Vale, S. Andreotti, S. B. Peres, G. F. Anhê, C.D.N. Borges-Silva, J. C. Neto, and F. B. Lima, “Melatonin enhances leptin expression by rat adipocytes in the presence of insulin,” American Journal of Physiology, vol. 288, no. 4, pp. E805–E812, 2005. View at Publisher · View at Google Scholar · View at PubMed
  35. K. Spiegel, R. Leproult, M. L'Hermite-Balériaux, G. Copinschi, P. D. Penev, and E. Van Cauter, “Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5762–5771, 2004. View at Publisher · View at Google Scholar · View at PubMed
  36. K. Spiegel, E. Tasali, P. Penev, and E. Van Cauter, “Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite,” Annals of Internal Medicine, vol. 141, no. 11, pp. 846–850, 2004.
  37. S. M. Schmid, M. Hallschmid, K. Jauch-Chara, J. Born, and B. Schultes, “A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men,” Journal of Sleep Research, vol. 17, no. 3, pp. 331–334, 2008. View at Publisher · View at Google Scholar · View at PubMed
  38. J. M. Mullington, J. L. Chan, and J. L. Chan, “Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men,” Journal of Neuroendocrinology, vol. 15, no. 9, pp. 851–854, 2003. View at Publisher · View at Google Scholar
  39. A. V. Nedeltcheva, J. M. Kilkus, J. Imperial, K. Kasza, D. A. Schoeller, and P. D. Penev, “Sleep curtailment is accompanied by increased intake of calories from snacks,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 126–133, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. S. Taheri, L. Lin, D. Austin, T. Young, and E. Mignot, “Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index,” PLoS Medicine, vol. 1, no. 3, article e62, 2004.
  41. K. Chen, F. Li, and F. Li, “Induction of leptin resistance through direct interaction of C-reactive protein with leptin,” Nature Medicine, vol. 12, no. 4, pp. 425–432, 2006. View at Publisher · View at Google Scholar · View at PubMed
  42. B. G. Phillips, M. Kato, K. Narkiewicz, I. Choe, and V. K. Somers, “Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea,” American Journal of Physiology, vol. 279, no. 1, pp. H234–H237, 2000.
  43. A. D. Laposky, J. Shelton, J. Bass, C. Dugovic, N. Perrino, and F. W. Turek, “Altered sleep regulation in leptin-deficient mice,” American Journal of Physiology, vol. 290, no. 4, pp. R894–R903, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. A. D. Laposky, M. A. Bradley, D. L. Williams, J. Bass, and F. W. Turek, “Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice,” American Journal of Physiology, vol. 295, no. 6, pp. R2059–R2066, 2008. View at Publisher · View at Google Scholar · View at PubMed
  45. J. M. Siegel, “Hypocretin (OREXIN): role in normal behavior and neuropathology,” Annual Review of Psychology, vol. 55, pp. 125–148, 2004. View at Publisher · View at Google Scholar · View at PubMed
  46. J. S. Flier, “Obesity wars: molecular progress confronts an expanding epidemic,” Cell, vol. 116, no. 2, pp. 337–350, 2004. View at Publisher · View at Google Scholar
  47. Y. Date, Y. Ueta, and Y. Ueta, “Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 748–753, 1999. View at Publisher · View at Google Scholar
  48. T. Nambu, T. Sakurai, K. Mizukami, Y. Hosoya, M. Yanagisawa, and K. Goto, “Distribution of orexin neurons in the adult rat brain,” Brain Research, vol. 827, no. 1-2, pp. 243–260, 1999. View at Publisher · View at Google Scholar
  49. A. Yamanaka, C. T. Beuckmann, and C. T. Beuckmann, “Hypothalamic orexin neurons regulate arousal according to energy balance in mice,” Neuron, vol. 38, no. 5, pp. 701–713, 2003. View at Publisher · View at Google Scholar
  50. T. Sakurai, “Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis,” Sleep Medicine Reviews, vol. 9, no. 4, pp. 231–241, 2005. View at Publisher · View at Google Scholar · View at PubMed
  51. S. Taheri, J. M. Zeitzer, and E. Mignot, “The role of hypocretins (orexins) in sleep regulation and narcolepsy,” Annual Review of Neuroscience, vol. 25, pp. 283–313, 2002. View at Publisher · View at Google Scholar · View at PubMed
  52. Y. Honda, Y. Doi, R. Ninomiya, and C. Ninomiya, “Increased frequency of non-insulin-dependent diabetes mellitus among narcoleptic patients,” Sleep, vol. 9, no. 1, pp. 254–259, 1986.
  53. A. Schuld, J. Hebebrand, F. Geller, and T. Pollmacher, “Increased body-mass index in patients with narcolepsy,” The Lancet, vol. 355, no. 9211, pp. 1274–1275, 2000.
  54. J. Hara, M. Yanagisawa, and T. Sakurai, “Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions,” Neuroscience Letters, vol. 380, no. 3, pp. 239–242, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. S. Zhang, J. M. Zeitzer, T. Sakurai, S. Nishino, and E. Mignot, “Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy,” Journal of Physiology, vol. 581, no. 2, pp. 649–663, 2007. View at Publisher · View at Google Scholar · View at PubMed
  56. H. Tsuneki, S. Murata, and S. Murata, “Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice,” Diabetologia, vol. 51, no. 4, pp. 657–667, 2008. View at Publisher · View at Google Scholar · View at PubMed
  57. S. R. Patel, N. T. Ayas, and N. T. Ayas, “A prospective study of sleep duration and mortality risk in women,” Sleep, vol. 27, no. 3, pp. 440–444, 2004.
  58. M. Cournot, J.-B. Ruidavets, J.-C. Marquié, Y. Esquirol, B. Baracat, and J. Ferrières, “Environmental factors associated with body mass index in a population of Southern France,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 11, no. 4, pp. 291–297, 2004. View at Publisher · View at Google Scholar
  59. J. Vioque, A. Torres, and J. Quiles, “Time spent watching television, sleep duration and obesity in adults living in Valencia, Spain,” International Journal of Obesity and Related Metabolic Disorders, vol. 24, no. 12, pp. 1683–1688, 2000.
  60. H. Shigeta, M. Shigeta, A. Nakazawa, N. Nakamura, and Y. Toshikazu, “Lifestyle, obesity, and insulin resistance,” Diabetes Care, vol. 24, no. 3, p. 608, 2001.
  61. J. E. Gangwisch, D. Malaspina, B. Boden-Albala, and S. B. Heymsfield, “Inadequate sleep as a risk factor for obesity: analyses of the NHANES I,” Sleep, vol. 28, no. 10, pp. 1289–1296, 2005.
  62. S. R. Patel, A. Malhotra, D. P. White, D. J. Gottlieb, and F. B. Hu, “Association between reduced sleep and weight gain in women,” American Journal of Epidemiology, vol. 164, no. 10, pp. 947–954, 2006. View at Publisher · View at Google Scholar · View at PubMed
  63. E. Locard, N. Mamelle, A. Billette, M. Miginiac, F. Munoz, and S. Rey, “Risk factors of obesity in a five year old population. Parental versus environmental factors,” International Journal of Obesity and Related Metabolic Disorders, vol. 16, no. 10, pp. 721–729, 1992.
  64. M. Sekine, T. Yamagami, and T. Yamagami, “A dose-response relationship between short sleeping hours and childhood obesity: results of the Toyama birth cohort study,” Child: Care, Health and Development, vol. 28, no. 2, pp. 163–170, 2002. View at Publisher · View at Google Scholar
  65. J. J. Reilly, J. Armstrong, and J. Armstrong, “Early life risk factors for obesity in childhood: cohort study,” British Medical Journal, vol. 330, no. 7504, pp. 1357–1359, 2005. View at Publisher · View at Google Scholar · View at PubMed
  66. A. Rechtschaffen and B. M. Bergmann, “Sleep deprivation in the rat by the disk-over-water method,” Behavioural Brain Research, vol. 69, no. 1-2, pp. 55–63, 1995. View at Publisher · View at Google Scholar
  67. M. Koban and K. L. Swinson, “Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue,” American Journal of Physiology, vol. 289, no. 1, pp. E68–E74, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. D. C. Hipólide, D. Suchecki, A. P. de Carvalho Pinto, E. Chiconelli Faria, S. Tufik, and J. Luz, “Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic-pituitary-adrenal axis activity, energy balance and body composition of rats,” Journal of Neuroendocrinology, vol. 18, no. 4, pp. 231–238, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. S. R. Patel and F. B. Hu, “Short sleep duration and weight gain: a systematic review,” Obesity, vol. 16, no. 3, pp. 643–653, 2008. View at Publisher · View at Google Scholar · View at PubMed
  70. D. S. Lauderdale, K. L. Knutson, L. L. Yan, P. J. Rathouz, S. B. Hulley, S. Sidney, and K. Liu, “Objectively measured sleep characteristics among early-middle-aged adults: the CARDIA study,” American Journal of Epidemiology, vol. 164, no. 1, pp. 5–16, 2006. View at Publisher · View at Google Scholar · View at PubMed
  71. J. F. Van Den Berg, A. Knvistingh Neven, J. H. M. Tulen, A. Hofman, J. C. M. Witteman, H. M. E. Miedema, and H. Tiemeier, “Actigraphic sleep duration and fragmentation are related to obesity in the elderly: the Rotterdam Study,” International Journal of Obesity and Related Metabolic Disorders, vol. 32, no. 7, pp. 1083–1090, 2008. View at Publisher · View at Google Scholar · View at PubMed
  72. D. S. Lauderdale, K. L. Knutson, P. J. Rathouz, L. L. Yan, S. B. Hulley, and K. Liu, “Cross-sectional and longitudinal associations between objectively measured sleep duration and body mass index,” American Journal of Epidemiology, vol. 170, no. 7, pp. 805–813, 2009. View at Publisher · View at Google Scholar · View at PubMed
  73. S. R. Patel, T. Blackwell, and T. Blackwell, “The association between sleep duration and obesity in older adults,” International Journal of Obesity, vol. 32, no. 12, pp. 1825–1834, 2008. View at Publisher · View at Google Scholar · View at PubMed
  74. W. S. Agras, L. D. Hammer, F. McNicholas, and H. C. Kraemer, “Risk factors for childhood overweight: a prospective study from birth to 9.5 years,” Journal of Pediatrics, vol. 145, no. 1, pp. 20–25, 2004. View at Publisher · View at Google Scholar · View at PubMed
  75. J. C. Lumeng, D. Somashekar, D. Appugliese, N. Kaciroti, R. F. Corwyn, and R. H. Bradley, “Shorter sleep duration is associated with increased risk for being overweight at ages 9 to 12 years,” Pediatrics, vol. 120, no. 5, pp. 1020–1029, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. G. Hasler, D. J. Buysse, and D. J. Buysse, “The association between short sleep duration and obesity in young adults: a 13-year prospective study,” Sleep, vol. 27, no. 4, pp. 661–666, 2004.
  77. M. H. Kryger, T. Roth, and W. C. Dement, Principles and Practice of Sleep Medicine, W.B. Saunders, Philadelphia, Pa, USA, 2000.
  78. D. M. Hiestand, P. Britz, M. Goldman, and B. Phillips, “Prevalence of symptoms and risk of sleep apnea in the US population: results from the National Sleep Foundation Sleep in America 2005 poll,” Chest, vol. 130, no. 3, pp. 780–786, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. T. Young, P. E. Peppard, and D. J. Gottlieb, “Epidemiology of obstructive sleep apnea: a population health perspective,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 9, pp. 1217–1239, 2002. View at Publisher · View at Google Scholar
  80. P. G. Norton and E. V. Dunn, “Snoring as a risk factor for disease: an epidemiological survey,” British Medical Journal, vol. 291, no. 6496, pp. 630–632, 1985.
  81. P. Jennum, K. Schultz-Larsen, and N. Christensen, “Snoring, sympathetic activity and cardiovascular risk factors in a 70 year old population,” European Journal of Epidemiology, vol. 9, no. 5, pp. 477–482, 1993.
  82. A. Elmasry, C. Janson, E. Lindberg, T. Gislason, M. A. Tageldin, and G. Boman, “The role of habitual snoring and obesity in the development of diabetes: a 10-year follow-up study in a male population,” Journal of Internal Medicine, vol. 248, no. 1, pp. 13–20, 2000. View at Publisher · View at Google Scholar
  83. A.-K. Renko, L. Hiltunen, M. Laakso, U. Rajala, and S. Keinänen-Kiukaanniemi, “The relationship of glucose tolerance to sleep disorders and daytime sleepiness,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 84–91, 2005. View at Publisher · View at Google Scholar · View at PubMed
  84. E. Lindberg, C. Berne, K. A. Franklin, M. Svensson, and C. Janson, “Snoring and daytime sleepiness as risk factors for hypertension and diabetes in women—a population-based study,” Respiratory Medicine, vol. 101, no. 6, pp. 1283–1290, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. N. M. Punjabi, J. D. Sorkin, L. I. Katzel, A. P. Goldberg, A. R. Schwartz, and P. L. Smith, “Sleep-disordered breathing and insulin resistance in middle-aged and overweight men,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 5, pp. 677–682, 2002.
  86. M. S. M. Ip, B. Lam, M. M. T. Ng, W. K. Lam, K. W. T. Tsang, and K. S. L. Lam, “Obstructive sleep apnea is independently associated with insulin resistance,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 5, pp. 670–676, 2002.
  87. N. M. Punjabi, E. Shahar, S. Redline, D. J. Gottlieb, R. Givelber, and H. E. Resnick, “Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study,” American Journal of Epidemiology, vol. 160, no. 6, pp. 521–530, 2004. View at Publisher · View at Google Scholar · View at PubMed
  88. M. Okada, A. Takamizawa, K. Tsushima, K. Urushihata, K. Fujimoto, and K. Kubo, “Relationship between sleep-disordered breathing and lifestyle-related illnesses in subjects who have undergone health-screening,” Internal Medicine, vol. 45, no. 15, pp. 891–896, 2006. View at Publisher · View at Google Scholar
  89. K. J. Reichmuth, D. Austin, J. B. Skatrud, and T. Young, “Association of sleep apnea and type II diabetes: a population-based study,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 12, pp. 1590–1595, 2005. View at Publisher · View at Google Scholar · View at PubMed
  90. A. N. Vgontzas, D. A. Papanicolaou, and D. A. Papanicolaou, “Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 3, pp. 1151–1158, 2000. View at Publisher · View at Google Scholar
  91. N. Meslier, F. Gagnadoux, P. Giraud, C. Person, H. Ouksel, T. Urban, and J.-L. Racineux, “Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome,” European Respiratory Journal, vol. 22, no. 1, pp. 156–160, 2003. View at Publisher · View at Google Scholar
  92. S. Makino, H. Handa, and H. Handa, “Obstructive sleep apnoea syndrome, plasma adiponectin levels, and insulin resistance,” Clinical Endocrinology, vol. 64, no. 1, pp. 12–19, 2006. View at Publisher · View at Google Scholar · View at PubMed
  93. M. Kono, K. Tatsumi, T. Saibara, A. Nakamura, N. Tanabe, Y. Takiguchi, and T. Kuriyama, “Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome,” Chest, vol. 131, no. 5, pp. 1387–1392, 2007. View at Publisher · View at Google Scholar · View at PubMed
  94. A. Gruber, F. Horwood, J. Sithole, N. J. Ali, and I. Idris, “Obstructive sleep apnoea is independently associated with the metabolic syndrome but not insulin resistance state,” Cardiovascular Diabetology, vol. 5, article 22, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. S. K. Sharma, S. Kumpawat, A. Goel, A. Banga, L. Ramakrishnan, and P. Chaturvedi, “Obesity, and not obstructive sleep apnea, is responsible for metabolic abnormalities in a cohort with sleep-disordered breathing,” Sleep Medicine, vol. 8, no. 1, pp. 12–17, 2007. View at Publisher · View at Google Scholar · View at PubMed
  96. Ç. Çuhadaroǧlu, A. Utkusavaş, L. Öztürk, S. Salman, and T. Ece, “Effects of nasal CPAP treatment on insulin resistance, lipid profile, and plasma leptin in sleep apnea,” Lung, vol. 187, no. 2, pp. 75–81, 2009. View at Publisher · View at Google Scholar · View at PubMed
  97. Z. Dorkova, D. Petrasova, A. Molcanyiova, M. Popovnakova, and R. Tkacova, “Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome,” Chest, vol. 134, no. 4, pp. 686–692, 2008. View at Publisher · View at Google Scholar · View at PubMed
  98. B. Brooks, P. A. Cistulli, and P. A. Cistulli, “Obstructive sleep apnea in obese noninsulin-dependent diabetic patients: effect of continuous positive airway pressure treatment on insulin responsiveness,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 6, pp. 1681–1685, 1994.
  99. A. R. Babu, J. Herdegen, L. Fogelfeld, S. Shott, and T. Mazzone, “Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea,” Archives of Internal Medicine, vol. 165, no. 4, pp. 447–452, 2005. View at Publisher · View at Google Scholar · View at PubMed
  100. I. A. Harsch, S. P. Schahin, and S. P. Schahin, “Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 2, pp. 156–162, 2004. View at Publisher · View at Google Scholar · View at PubMed
  101. B. G. Cooper, J. E. S. White, L. A. Ashworth, K. G. M. M. Alberti, and G. J. Gibson, “Hormonal and metabolic profiles in subjects with obstructive sleep apnea syndrome and the acute effects of nasal continuous positive airway pressure (CPAP) treatment,” Sleep, vol. 18, no. 3, pp. 172–179, 1995.
  102. L. Czupryniak, J. Loba, M. Pawlowski, D. Nowak, and P. Bialasiewicz, “Treatment with continuous positive airway pressure may affect blood glucose levels in nondiabetic patients with obstructive sleep apnea syndrome,” Sleep, vol. 28, no. 5, pp. 601–603, 2005.
  103. M. S. M. Ip, K. S. L. Lam, C.-M. Ho, K. W. T. Tsang, and W. Lam, “Serum leptin and vascular risk factors in obstructive sleep apnea,” Chest, vol. 118, no. 3, pp. 580–586, 2000.
  104. J. Saini, J. Krieger, G. Brandenberger, G. Wittersheim, C. Simon, and M. Follenius, “Continuous positive airway pressure treatment. Effects on growth hormone, insulin and glucose profiles in obstructive sleep apnea patients,” Hormone and Metabolic Research, vol. 25, no. 7, pp. 375–381, 1993.
  105. S. R. Coughlin, L. Mawdsley, J. A. Mugarza, J. P. H. Wilding, and P. M. A. Calverley, “Cardiovascular and metabolic effects of CPAP in obese males with OSA,” European Respiratory Journal, vol. 29, no. 4, pp. 720–727, 2007. View at Publisher · View at Google Scholar · View at PubMed
  106. S. D. West, D. J. Nicoll, T. M. Wallace, D. R. Matthews, and J. R. Stradling, “Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes,” Thorax, vol. 62, no. 11, pp. 969–974, 2007. View at Publisher · View at Google Scholar · View at PubMed
  107. I. A. Harsch, S. P. Schahin, and S. P. Schahin, “The effect of continuous positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes,” Respiration, vol. 71, no. 3, pp. 252–259, 2004. View at Publisher · View at Google Scholar · View at PubMed
  108. A. N. Vgontzas, C. Tsigos, and C. Tsigos, “Chronic insomnia and activity of the stress system: a preliminary study,” Journal of Psychosomatic Research, vol. 45, no. 1, pp. 21–31, 1998. View at Publisher · View at Google Scholar
  109. S. Daan, D. G. Beersma, and A. A. Borbély, “Timing of human sleep: recovery process gated by a circadian pacemaker,” American Journal of Physiology, vol. 246, no. 2, part 2, pp. R161–R183, 1984.
  110. D. J. Buysse, “Diagnosis and assessment of sleep and circadian rhythm disorders,” Journal of Psychiatric Practice, vol. 11, no. 2, pp. 102–115, 2005. View at Publisher · View at Google Scholar
  111. A. Barion and P. C. Zee, “A clinical approach to circadian rhythm sleep disorders,” Sleep Medicine, vol. 8, no. 6, pp. 566–577, 2007. View at Publisher · View at Google Scholar · View at PubMed
  112. U.S. Department of Labor, Workers on Flexible and Shift Schedules in 2004 Summary, Bureau of Labor Statistics, Washington, DC, USA, 2005.
  113. A. Knutsson, T. Åkerstedt, B. G. Jonsson, and K. Orth-Gomer, “Increased risk of ischaemic heart disease in shift workers,” The Lancet, vol. 2, no. 8498, pp. 89–92, 1986.
  114. M. Nurminen and A. Karjalainen, “Epidemiologic estimate of the proportion of fatalities related to occupational factors in Finland,” Scandinavian Journal of Work, Environment and Health, vol. 27, no. 3, pp. 161–213, 2001.
  115. F. Tüchsen, H. Hannerz, and H. Burr, “A 12 year prospective study of circulatory disease among Danish shift workers,” Occupational and Environmental Medicine, vol. 63, no. 7, pp. 451–455, 2006. View at Publisher · View at Google Scholar · View at PubMed
  116. C. H. Kroenke, D. Spiegelman, J. Manson, E. S. Schernhammer, G. A. Colditz, and I. Kawachi, “Work characteristics and incidence of type 2 diabetes in women,” American Journal of Epidemiology, vol. 165, no. 2, pp. 175–183, 2007. View at Publisher · View at Google Scholar · View at PubMed
  117. Y. Morikawa, H. Nakagawa, and H. Nakagawa, “Effect of shift work on body mass index and metabolic parameters,” Scandinavian Journal of Work, Environment and Health, vol. 33, no. 1, pp. 45–50, 2007.
  118. B. Karlsson, A. Knutsson, and B. Lindahl, “Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people,” Occupational and Environmental Medicine, vol. 58, no. 11, pp. 747–752, 2001. View at Publisher · View at Google Scholar
  119. F. A. J. L. Scheer, M. F. Hilton, C. S. Mantzoros, and S. A. Shea, “Adverse metabolic and cardiovascular consequences of circadian misalignment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4453–4458, 2009. View at Publisher · View at Google Scholar · View at PubMed
  120. V. Lyssenko, C. L. F. Nagorny, and C. L. F. Nagorny, “Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion,” Nature Genetics, vol. 41, no. 1, pp. 82–88, 2009. View at Publisher · View at Google Scholar · View at PubMed
  121. P. D. Penev, D. E. Kolker, P. C. Zee, and F. W. Turek, “Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease,” American Journal of Physiology, vol. 275, no. 6, pp. H2334–H2337, 1998.
  122. G. Fraser, J. Trinder, I. M. Colrain, and I. Montgomery, “Effect of sleep and circadian cycle on sleep period energy expenditure,” Journal of Applied Physiology, vol. 66, no. 2, pp. 830–836, 1989.
  123. E. Ravussin, B. Burnand, Y. Schutz, and E. Jequier, “Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects,” American Journal of Clinical Nutrition, vol. 35, no. 3, pp. 566–573, 1982.
  124. L. Garby, M. S. Kurzer, O. Lammert, and E. Nielsen, “Energy expenditure during sleep in men and women: evaporative and sensible heat losses,” Human Nutrition: Clinical Nutrition, vol. 41, no. 3, pp. 225–233, 1987.
  125. E. W. H. M. Fredrix, P. B. Soeters, I. M. Deerenberg, A. D. M. Kester, M. F. Von Meyenfeldt, and W. H. M. Saris, “Resting and sleeping energy expenditure in the elderly,” European Journal of Clinical Nutrition, vol. 44, no. 10, pp. 741–747, 1990.
  126. J. Aschoff and H. Pohl, “Rhythmic variations in energy metabolism,” Federation Proceedings, vol. 29, no. 4, pp. 1541–1552, 1970.
  127. F. A. Milan and E. Evonuk, “Oxygen consumption and body temperatures of Eskimos during sleep,” Journal of Applied Physiology, vol. 22, no. 3, pp. 565–567, 1967.
  128. M. B. Kreider, E. R. Buskirk, and D. E. Bass, “Oxygen consumption and body temperatures during the night,” Journal of Applied Physiology, vol. 12, no. 3, pp. 361–366, 1958.
  129. C. M. Shapiro, C. C. Goll, G. R. Cohen, and I. Oswald, “Heat production during sleep,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 56, no. 3, pp. 671–677, 1984.
  130. D. P. White, J. V. Weil, and C. W. Zwillich, “Metabolic rate and breathing during sleep,” Journal of Applied Physiology, vol. 59, no. 2, pp. 384–391, 1985.
  131. I. Montgomery, J. Trinder, and S. J. Paxton, “Energy expenditure and total sleep time: effect of physical exercise,” Sleep, vol. 5, no. 2, pp. 159–168, 1982.
  132. K. R. Westerterp, G. A. L. Meijer, W. H. M. Saris, P. B. Soeters, Y. Winants, and F. T. Hoor, “Physical activity and sleeping metabolic rate,” Medicine and Science in Sports and Exercise, vol. 23, no. 2, pp. 166–170, 1991.
  133. A. M. Fontvieille, R. Rising, M. Spraul, D. E. Larson, and E. Ravussin, “Relationship between sleep stages and metabolic rate in humans,” American Journal of Physiology, vol. 267, no. 5, pp. E732–E737, 1994.
  134. K. Zhang, M. Sun, P. Werner, A. J. Kovera, J. Albu, F. X. Pi-Sunyer, and C. N. Boozer, “Sleeping metabolic rate in relation to body mass index and body composition,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, no. 3, pp. 376–383, 2002. View at Publisher · View at Google Scholar
  135. P. Penev, A. Nedeltcheva, J. Imperial, et al., “Impact of an obesigenic environmenton body weight homeostasis in the presence or absence of sleep loss,” Sleep, vol. 28, p. A132, 2006.
  136. R. M. Bland, S. Bulgarelli, J. C. Ventham, D. Jackson, J. J. Reilly, and J. Y. Paton, “Total energy expenditure in children with obstructive sleep apnoea syndrome,” European Respiratory Journal, vol. 18, no. 1, pp. 164–169, 2001. View at Publisher · View at Google Scholar
  137. C. L. Marcus, J. L. Carroll, C. B. Koerner, A. Hamer, J. Lutz, and G. M. Loughlin, “Determinants of growth in children with the obstructive sleep apnea syndrome,” Journal of Pediatrics, vol. 125, no. 4, pp. 556–562, 1994. View at Publisher · View at Google Scholar
  138. A. M. Li, J. Yin, D. Chan, S. Hui, and T. F. Fok, “Sleeping energy expenditure in paediatric patients with obstructive sleep apnoea syndrome,” Hong Kong Medical Journal, vol. 9, no. 5, pp. 353–356, 2003.
  139. D. F. Kripke, L. Garfinkel, D. L. Wingard, M. R. Klauber, and M. R. Marler, “Mortality associated with sleep duration and insomnia,” Archives of General Psychiatry, vol. 59, no. 2, pp. 131–136, 2002.