About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2012 (2012), Article ID 389108, 10 pages
http://dx.doi.org/10.1155/2012/389108
Clinical Study

Change of Body Composition and Adipokines and Their Relationship with Insulin Resistance across Pubertal Development in Obese and Nonobese Chinese Children: The BCAMS Study

1Endocrine Key Laboratory of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing 100730, China
2Department of Epidemiology, Capital Institute of Pediatrics, Beijing 100020, China

Received 23 August 2012; Revised 29 October 2012; Accepted 9 November 2012

Academic Editor: Daniela Jezova

Copyright © 2012 Lu Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. B. Ebbeling, D. B. Pawlak, and D. S. Ludwig, “Childhood obesity: public-health crisis, common sense cure,” The Lancet, vol. 360, no. 9331, pp. 473–482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Moran, D. R. Jacobs, J. Steinberger et al., “Insulin resistance during puberty: results from clamp studies in 357 children,” Diabetes, vol. 48, no. 10, pp. 2039–2044, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. M. I. Goran and B. A. Gower, “Longitudinal study on pubertal insulin resistance,” Diabetes, vol. 50, no. 7–12, pp. 2444–2450, 2001. View at Scopus
  4. T. S. Hannon, J. Janosky, and S. A. Arslanian, “Longitudinal study of physiologic insulin resistance and metabolic changes of puberty,” Pediatric Research, vol. 60, no. 6, pp. 759–763, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Moran, D. R. Jacobs, J. Steinberger et al., “Association between the insulin resistance of puberty and the insulin-like growth factor-I/growth hormone axis,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 10, pp. 4817–4820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Guzzaloni, G. Grugni, G. Mazzilli, D. Moro, and F. Morabito, “Comparison between β-cell function and insulin resistance indexes in prepubertal and pubertal obese children,” Metabolism, vol. 51, no. 8, pp. 1011–1016, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. D. C. Ball, M. J. Weigensberg, M. L. Cruz, G. Q. Shaibi, H. A. Kobaissi, and M. I. Goran, “Insulin sensitivity, insulin secretion and β-cell function during puberty in overweight Hispanic children with a family history of type 2 diabetes,” International Journal of Obesity, vol. 29, no. 12, pp. 1471–1477, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” The New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Liuzzi, G. Savia, M. Tagliaferri et al., “Serum leptin concentration in moderate and severe obesity: relationship with clinical, anthropometric and metabolic factors,” International Journal of Obesity, vol. 23, no. 10, pp. 1066–1073, 1999. View at Scopus
  10. E. Arvidsson, N. Viguerie, I. Andersson, C. Verdich, D. Langin, and P. Arner, “Effects of different hypocaloric diets on protein secretion from adipose tissue of obese women,” Diabetes, vol. 53, no. 8, pp. 1966–1971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Viguerie, H. Vidal, P. Arner et al., “Adipose tissue gene expression in obese subjects during low-fat and high-fat hypocaloric diets,” Diabetologia, vol. 48, no. 1, pp. 123–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Di Stefano, V. Bini, F. Papi et al., “Leptin serum concentrations predict the responsiveness of obese children and adolescents to weight excess reduction program,” International Journal of Obesity, vol. 24, no. 12, pp. 1586–1591, 2000. View at Scopus
  13. R. Pilcová, J. Šulcová, M. Hill, P. Bláha, and L. Lisá, “Leptin levels in obese children: effects of gender, weight reduction and androgens,” Physiological Research, vol. 52, no. 1, pp. 53–60, 2003. View at Scopus
  14. M. W. Rajala and P. E. Scherer, “Minireview: the adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis,” Endocrinology, vol. 144, no. 9, pp. 3765–3773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Landskroner-Eiger, B. Qian, E. S. Muise et al., “Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo,” Clinical Cancer Research, vol. 15, no. 10, pp. 3265–3276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. N. Roemmich, P. A. Clark, M. Lusk et al., “Pubertal alterations in growth and body composition. VI. Pubertal insulin resistance: relation to adiposity, body fat distribution and hormone release,” International Journal of Obesity, vol. 26, no. 5, pp. 701–709, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Li, A. Fisette, X. Y. Zhao, J. Y. Deng, J. Mi, and K. Cianflone, “Serum resistin correlates with central obesity but weakly with insulin resistance in Chinese children and adolescents,” International Journal of Obesity, vol. 33, no. 4, pp. 424–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Group of China Obesity Task Force, “Body mass index reference norm for screening overweight and obesity in Chinese children and adolescents,” Chinese Journal of Epidemiology, vol. 25, no. 2, pp. 97–102, 2004.
  19. M. Li, C. Wu, A. Song, et al., “Development and preliminary application of enzyme-linked immunosorbent assay for human net insulin in serum,” Chinese Journal of Endocrinology and Metabolis, vol. 13, pp. 214–217, 1997.
  20. M. Li, J. H. Yin, K. Zhang, and C. Y. Wu, “A highly sensitive enzyme-linked immunosorbent assay for measurement of leptin secretion in human adipocytes,” Zhonghua Yi Xue Za Zhi, vol. 88, no. 46, pp. 3293–3297, 2008. View at Scopus
  21. W. A. Marshall and J. M. Tanner, “Puberty,” in Human Growth, F. Falkner and J. M. Tanner, Eds., vol. 2, pp. 171–210, Plenum Press, New York, NY, USA, 1986.
  22. D. R. Matthews, J. P. Hosker, A. S. Rudenski, et al., “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Scopus
  23. P. Brambilla, G. Bedogni, L. A. Moreno et al., “Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children,” International Journal of Obesity, vol. 30, no. 1, pp. 23–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Masuzaki, Y. Ogawa, N. Isse et al., “Human obese gene expression: adipocyte-specific expression and regional differences in the adipose tissue,” Diabetes, vol. 44, no. 7, pp. 855–858, 1995. View at Scopus
  25. J. F. Caro, M. K. Sinha, J. W. Kolaczynski, P. L. Zhang, and R. V. Considine, “Leptin: the tale of an obesity gene,” Diabetes, vol. 45, no. 11, pp. 1455–1462, 1996. View at Scopus
  26. M. A. Banerji, N. Faridi, R. Atluri, R. L. Chaiken, and H. E. Lebovitz, “Body composition, visceral fat, leptin, and insulin resistance in Asian Indian men,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 1, pp. 137–144, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. T. R. Nagy, B. A. Gower, C. A. Trowbridge, C. Dezenberg, R. M. Shewchuk, and M. I. Goran, “Effects of gender, ethnicity, body composition, and fat distribution on serum leptin concentrations in children,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 7, pp. 2148–2152, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Seidell, A. Oosterlee, P. Deurenberg, J. G. A. J. Hautvast, and J. H. J. Ruijs, “Abdominal fat depots measured with computed tomography: effects of degree of obesity, sex, and age,” European Journal of Clinical Nutrition, vol. 42, no. 9, pp. 805–815, 1988. View at Scopus
  29. R. Janečková, “The role of leptin in human physiology and pathophysiology,” Physiological Research, vol. 50, no. 5, pp. 443–459, 2001. View at Scopus
  30. L. A. Loomba-Albrecht and D. M. Styne, “Effect of puberty on body composition,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 16, no. 1, pp. 10–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. B. Horlick, M. Rosenbaum, M. Nicolson et al., “Effect of puberty on the relationship between circulating leptin and body composition,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 7, pp. 2509–2518, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Grumbach, “The neuroendocrinology of human puberty revisited,” Hormone Research, vol. 57, supplement 2, pp. 2–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Böttner, J. Kratzsch, G. Müller et al., “Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 4053–4061, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. K. K. Andersen, J. Frystyk, O. D. Wolthers, C. Heuck, and A. Flyvbjerg, “Gender differences of oligomers and total adiponectin during puberty: a cross-sectional study of 859 Danish School Children,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 5, pp. 1857–1862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. G. A. Martos-Moreno, V. Barrios, and J. Argente, “Normative data for adiponectin, resistin, interleukin 6 and leptin/receptor ratio in a healthy Spanish pediatric population: relationship with sex steroids,” European Journal of Endocrinology, vol. 155, no. 3, pp. 429–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. G. Woo, L. M. Dolan, S. R. Daniels, E. Goodman, and L. J. Martin, “Adolescent sex differences in adiponectin are conditional on pubertal development and adiposity,” Obesity Research, vol. 13, no. 12, pp. 2095–2101, 2005. View at Scopus
  37. P. L. Tsou, Y. D. Jiang, C. C. Chang et al., “Sex-related differences between adiponectin and insulin resistance in schoolchildren,” Diabetes Care, vol. 27, no. 2, pp. 308–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Lanfranco, M. Zitzmann, M. Simoni, and E. Nieschlag, “Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy,” Clinical Endocrinology, vol. 60, no. 4, pp. 500–507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. A. S. Lihn, J. M. Bruun, G. He, S. B. Pedersen, P. F. Jensen, and B. Richelsen, “Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects,” Molecular and Cellular Endocrinology, vol. 219, no. 1-2, pp. 9–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Brufani, A. Tozzi, D. Fintini et al., “Sexual dimorphism of body composition and insulin sensitivity across pubertal development in obese Caucasian subjects,” European Journal of Endocrinology, vol. 160, no. 5, pp. 769–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. N. C. Bush, B. E. Darnell, R. A. Oster, M. I. Goran, and B. A. Gower, “Adiponectin is lower among African Americans and is independently related to insulin sensitivity in children and adolescents,” Diabetes, vol. 54, no. 9, pp. 2772–2778, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Lee, F. Bacha, N. Gungor, and S. A. Arslanian, “Waist circumference is an independent predictor of insulin resistance in black and white youths,” Journal of Pediatrics, vol. 148, no. 2, pp. 188–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Caprio, L. D. Hyman, S. McCarthy, R. Lange, M. Bronson, and W. V. Tamborlane, “Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot,” American Journal of Clinical Nutrition, vol. 64, no. 1, pp. 12–17, 1996. View at Scopus
  44. P. Zimmet, G. K. M. M. Alberti, F. Kaufman et al., “The metabolic syndrome in children and adolescents—an IDF consensus report,” Pediatric Diabetes, vol. 8, no. 5, pp. 299–306, 2007. View at Publisher · View at Google Scholar · View at Scopus