About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2012 (2012), Article ID 396524, 13 pages
http://dx.doi.org/10.1155/2012/396524
Review Article

Tolerance-Inducing Strategies in Islet Transplantation

1Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
2Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA

Received 15 December 2011; Accepted 8 March 2012

Academic Editor: A. N. Balamurugan

Copyright © 2012 Sumantha Bhatt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Centers for Disease Control and Prevention, National Diabetes Fact Sheet: National Estimates and General Information on Diabetes and Prediabetes in the United States, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, Ga, USA, 2011.
  2. C. Ricordi and T. B. Strom, “Clinical islet transplantation: advances and immunological challenges,” Nature Reviews Immunology, vol. 4, no. 4, pp. 259–268, 2004. View at Scopus
  3. P. Fiorina, A. M. J. Shapiro, C. Ricordi, and A. Secchi, “The clinical impact of islet transplantation,” American Journal of Transplantation, vol. 8, no. 10, pp. 1990–1997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. P. Robertson, “Islet transplantation as a treatment for diabetes—a work in progress,” The New England Journal of Medicine, vol. 350, no. 7, pp. 694–705, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. W. Williams, “Notes on diabetes treated with extract andby grafts of sheep’s pancreas,” BMJ, vol. 2, pp. 1303–1304, 1894.
  6. C. B. Kemp, M. J. Knight, and D. W. Scharp, “Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats,” Diabetologia, vol. 9, no. 6, pp. 486–491, 1973. View at Scopus
  7. N. S. Kenyon, M. Chatzipetrou, M. Masetti et al., “Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 8132–8137, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hermann, R. Margreiter, and P. Hengster, “Human islet autotransplantation: the trail thus far and the highway ahead,” in The Islets of Langerhans, M. S. Islam, Ed., vol. 654, pp. 711–724, Springer, Dordrecht, The Netherlands, 2010.
  9. C. Ricordi, P. E. Lacy, E. H. Finke, B. J. Olack, and D. W. Scharp, “Automated method for isolation of human pancreatic islets,” Diabetes, vol. 37, no. 4, pp. 413–420, 1988. View at Scopus
  10. P. E. Lacy and M. Kostianovsky, “Method for the isolation of intact islets of Langerhans from the rat pancreas,” Diabetes, vol. 16, no. 1, pp. 35–39, 1967. View at Scopus
  11. D. W. Scharp, P. E. Lacy, J. V. Santiago et al., “Insulin independence after islet transplantation into type I diabetic patient,” Diabetes, vol. 39, no. 4, pp. 515–518, 1990. View at Scopus
  12. S. Merani and A. M. J. Shapiro, “Current status of pancreatic islet transplantation,” Clinical Science, vol. 110, no. 6, pp. 611–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Ingulli, “Mechanism of cellular rejection in transplantation,” Pediatric Nephrology, vol. 25, no. 1, pp. 61–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. J. Shapiro, E. G. Hao, J. R. T. Lakey, D. T. Finegood, R. V. Rajotte, and N. M. Kneteman, “Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts,” Transplantation, vol. 74, no. 11, pp. 1522–1528, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. J. Shapiro, J. R. T. Lakey, E. A. Ryan et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen,” The New England Journal of Medicine, vol. 343, no. 4, pp. 230–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. E. A. Ryan, J. R. T. Lakey, R. V. Rajotte et al., “Clinical outcomes and insulin secretion after islet transplantation with the edmonton protocol,” Diabetes, vol. 50, no. 4, pp. 710–719, 2001. View at Scopus
  17. P. Monti, M. Scirpoli, P. Maffi et al., “Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells,” The Journal of Clinical Investigation, vol. 118, no. 5, pp. 1806–1814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. J. Shapiro, C. Ricordi, B. J. Hering et al., “International trial of the Edmonton protocol for islet transplantation,” The New England Journal of Medicine, vol. 355, no. 13, pp. 1318–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Marcén, “Immunosuppressive drugs in kidney transplantation: impact on patient survival, and incidence of cardiovascular disease, malignancy and infection,” Drugs, vol. 69, no. 16, pp. 2227–2243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Sprent and H. Kishimoto, “The thymus and central tolerance,” Philosophical Transactions of the Royal Society B, vol. 356, no. 1409, pp. 609–616, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. O. O. Oluwole, H. A. Depaz, R. Gopinathan et al., “Indirect allorecognition in acquired thymic tolerance,” Diabetes, vol. 50, no. 7, pp. 1546–1552, 2001. View at Scopus
  22. S. F. Oluwole, O. O. Oluwole, A. O. Adeyeri, and H. A. DePaz, “New strategies in immune tolerance induction,” Cell Biochemistry and Biophysics, vol. 40, no. 3, pp. 27–48, 2004. View at Scopus
  23. L. D. Britt, D. W. Scharp, P. E. Lacy, and S. Slavin, “Transplantation of islet cells across major histocompatibility barriers after total lymphoid irradiation and infusion of allogeneic bone marrow cells,” Diabetes, vol. 31, supplement 4, pp. 63–68, 1982. View at Scopus
  24. H. Li, C. L. Kaufman, S. S. Boggs, P. C. Johnson, K. D. Patrene, and S. T. Ildstad, “Mixed allogeneic chimerism induced by a sublethal approach prevents autoimmune diabetes and reverses insulitis in nonobese diabetic (NOD) mice,” The Journal of Immunology, vol. 156, no. 1, pp. 380–388, 1996. View at Scopus
  25. M. M. Horowitz, R. P. Gale, P. M. Sondel et al., “Graft-versus-leukemia reactions after bone marrow transplantation,” Blood, vol. 75, no. 3, pp. 555–562, 1990. View at Scopus
  26. M. Mielcarek, P. J. Martin, W. Leisenring et al., “Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation,” Blood, vol. 102, no. 2, pp. 756–762, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Wekerle, J. Kurtz, S. Bigenzahn, Y. Takeuchi, and M. Sykes, “Mechanisms of transplant tolerance induction using costimulatory blockade,” Current Opinion in Immunology, vol. 14, no. 5, pp. 592–600, 2002.
  28. T. Wekerle, M. H. Sayegh, J. Hill et al., “Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance,” Journal of Experimental Medicine, vol. 187, no. 12, pp. 2037–2044, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Wekerle and M. Sykes, “Mixed chimerism and transplantation tolerance,” Annual Review of Medicine, vol. 52, pp. 353–370, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Nikolic, Y. Takeuchi, I. Leykin, Y. Fudaba, R. N. Smith, and M. Sykes, “Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity,” Diabetes, vol. 53, no. 2, pp. 376–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Elkin, T. B. Prighozina, O. Gurevitch, and S. Slavin, “Nonmyeloablative bone marrow transplantation based on deletion of host-anti-donor alloreactive cells prevents autoimmune insulitis and diabetes in nonobese diabetic mice,” Transplantation Proceedings, vol. 34, no. 4, pp. 1303–1306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Elkin, T. B. Prigozhina, and S. Slavin, “Prevention of diabetes in nonobese diabetic mice by nonmyeloablative allogeneic bone marrow transplantation,” Experimental Hematology, vol. 32, no. 6, pp. 579–584, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Chatenoud and J. A. Bluestone, “CD3-specific antibodies: a portal to the treatment of autoimmunity,” Nature Reviews Immunology, vol. 7, no. 8, pp. 622–632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Chatenoud, “CD3-specific antibody-induced active tolerance: from bench to bedside,” Nature Reviews Immunology, vol. 3, no. 2, pp. 123–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Liang, T. Huang, C. Zhang et al., “Donor CD8+ T cells facilitate induction of chimerism and tolerance without GVHD in autoimmune NOD mice conditioned with anti-CD3 mAb,” Blood, vol. 105, no. 5, pp. 2180–2188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Chatenoud, E. Thervet, J. Primo, and J. F. Bach, “Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 1, pp. 123–127, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Belghith, J. A. Bluestone, S. Barriot, J. Mégret, J. F. Bach, and L. Chatenoud, “TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes,” Nature Medicine, vol. 9, no. 9, pp. 1202–1208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Chen, G. Han, J. Wang et al., “Essential roles of TGF-β in anti-CD3 antibody therapy: reversal of diabetes in nonobese diabetic mice independent of FoxP3+CD4+ regulatory T cells,” Journal of Leukocyte Biology, vol. 83, no. 2, pp. 280–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Thomas, J. L. Contreras, C. A. Smyth et al., “Successful reversal of streptozotocin-induced diabetes with stable allogeneic islet function in a preclinical model of type 1 diabetes,” Diabetes, vol. 50, no. 6, pp. 1227–1236, 2001. View at Scopus
  40. B. J. Hering, R. Kandaswamy, J. D. Ansite et al., “Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes,” JAMA, vol. 293, no. 7, pp. 830–835, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Hirshberg, K. I. Rother, B. J. Digon et al., “Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience,” Diabetes Care, vol. 26, no. 12, pp. 3288–3295, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Préville, M. Flacher, B. LeMauff et al., “Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model,” Transplantation, vol. 71, no. 3, pp. 460–468, 2001. View at Scopus
  43. E. A. Friedman and M. M. Beyer, “Effect of antithymocyte globulin on islet of Langerhans transplantation,” Nephron, vol. 22, no. 1–3, pp. 212–216, 1978. View at Scopus
  44. C. Liu, H. Noorchashm, J. A. Sutter et al., “B lymphocyte-directed immunotherapy promotes long-term islet allograft survival in nonhuman primates,” Nature Medicine, vol. 13, no. 11, pp. 1295–1298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. E. C. Guinan, J. G. Gribben, V. A. Boussiotis, G. J. Freeman, and L. M. Nadler, “Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity,” Blood, vol. 84, no. 10, pp. 3261–3282, 1994. View at Scopus
  46. T. C. Pearson, D. Z. Alexander, K. J. Winn, P. S. Linsley, R. P. Lowry, and C. P. Larsen, “Transplantation tolerance induced by CTLA4-Ig,” Transplantation, vol. 57, no. 12, pp. 1701–1706, 1994. View at Scopus
  47. D. J. Lenschow, Y. Zeng, J. R. Thistlethwaite et al., “Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig,” Science, vol. 257, no. 5071, pp. 789–792, 1992. View at Scopus
  48. L. A. Turka, P. S. Linsley, H. Lin et al., “T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 22, pp. 11102–11105, 1992. View at Publisher · View at Google Scholar · View at Scopus
  49. M. G. Levisetti, P. A. Padrid, G. L. Szot et al., “Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation,” The Journal of Immunology, vol. 159, no. 11, pp. 5187–5191, 1997. View at Scopus
  50. T. M. Foy, A. Aruffo, J. Bajorath, J. E. Buhlmann, and R. J. Noelle, “Immune regulation by CD40 and its ligand GP39,” Annual Review of Immunology, vol. 14, pp. 591–617, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Van Kooten and J. Banchereau, “CD40-CD40 ligand,” Journal of Leukocyte Biology, vol. 67, no. 1, pp. 2–17, 2000. View at Scopus
  52. D. C. Parker, D. L. Greiner, N. E. Phillips et al., “Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 21, pp. 9560–9564, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. N. S. Kenyon, L. A. Fernandez, R. Lehmann et al., “Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154,” Diabetes, vol. 48, no. 7, pp. 1473–1481, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Shimizu, U. Schonbeck, F. Mach, P. Libby, and R. N. Mitchell, “Host CD40 ligand deficiency induces long-term allograft survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis,” The Journal of Immunology, vol. 165, no. 6, pp. 3506–3518, 2000. View at Scopus
  55. M. Koulmanda, R. N. Smith, A. Qipo, G. Weir, H. Auchincloss, and T. B. Strom, “Prolonged survival of allogeneic islets in cynomolgus monkeys after short-term anti-CD154-based therapy: nonimmunologic graft failure?” American Journal of Transplantation, vol. 6, no. 4, pp. 687–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. N. N. Iwakoshi, J. P. Mordes, T. G. Markees, N. E. Phillips, A. A. Rossini, and D. L. Greiner, “Treatment of allograft recipients with donor-specific transfusion and anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and prolonged graft survival in a CTLA4-dependent manner,” The Journal of Immunology, vol. 164, no. 1, pp. 512–521, 2000. View at Scopus
  57. M. M. Durham, A. W. Bingaman, A. B. Adams et al., “Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning,” The Journal of Immunology, vol. 165, no. 1, pp. 1–4, 2000. View at Scopus
  58. A. D. Kirk, D. M. Harlan, N. N. Armstrong et al., “CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8789–8794, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. A. M. Azimzadeh, S. Pfeiffer, G. Wu et al., “Alloimmunity in primate heart recipients with CD154 blockade: evidence for alternative costimulation mechanisms,” Transplantation, vol. 81, no. 2, pp. 255–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Koyama, T. Kawai, D. Andrews et al., “Thrombophilia associated with anti-CD154 monoclonal antibody treatment and its prophylaxis in nonhuman primates,” Transplantation, vol. 77, no. 3, pp. 460–462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Van Kooten, G. Lombardi, K. A. Gelderman et al., “Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities,” Transplantation, vol. 91, no. 1, pp. 2–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Lu and A. W. Thomson, “Genetic engineering of dendritic cells to enhance their tolerogenic potential,” Graft, vol. 5, no. 5, pp. 308–314, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Shortman and Y. J. Liu, “Mouse and human dendritic cell subtypes,” Nature Reviews Immunology, vol. 2, no. 3, pp. 151–161, 2002. View at Scopus
  64. J. I. Youn, S. Nagaraj, M. Collazo, and D. I. Gabrilovich, “Subsets of myeloid-derived suppressor cells in tumor-bearing mice,” The Journal of Immunology, vol. 181, no. 8, pp. 5791–5802, 2008. View at Scopus
  65. A. W. Thomson, L. Lu, N. Murase, A. J. Demetris, A. S. Rao, and T. E. Starzl, “Microchimerism, dendritic cell progenitors and transplantation tolerance,” Stem Cells, vol. 13, no. 6, pp. 622–639, 1995. View at Scopus
  66. H. R. Christensen, H. Frøkiær, and J. J. Pestka, “Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells,” The Journal of Immunology, vol. 168, no. 1, pp. 171–178, 2002. View at Scopus
  67. M. Li, X. Zhang, X. Zheng et al., “Tolerogenic dendritic cells transferring hyporesponsiveness and synergizing T regulatory cells in transplant tolerance,” International Immunology, vol. 20, no. 2, pp. 285–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. M. Tiao, L. Lu, R. Tao, L. Wang, J. J. Fung, and S. Qian, “Prolongation of cardiac allograft survival by systemic administration of immature recipient dendritic cells deficient in NF-κB activity,” Annals of Surgery, vol. 241, no. 3, pp. 497–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Luo, K. V. Tarbell, H. Yang et al., “Dendritic cells with TGF-β1 differentiate naïve CD4+ CD25- T cells into islet-protective Foxp3+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2821–2826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. D. H. Munn, M. D. Sharma, B. Baban et al., “GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase,” Immunity, vol. 22, no. 5, pp. 633–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Sonenberg, J. W. B. Hershey, and M. B. Mathews, Translational Control of Gene Expression, CSHL Press, 2001.
  72. J. C. Ochando, C. Homma, Y. Yang et al., “Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts,” Nature Immunology, vol. 7, no. 6, pp. 652–662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. F. Mackey, J. R. Gunn, C. Maliszewski, H. Kikutani, R. J. Noelle, and R. J. Barth, “Cutting edge: dendritic cells require maturation via CD40 to generate protective antitumor immunity,” The Journal of Immunology, vol. 161, no. 5, pp. 2094–2098, 1998. View at Scopus
  74. T. De Smedt, M. Van Mechelen, G. De Becker, J. Urbain, O. Leo, and M. Moser, “Effect of interleukin-10 on dendritic cell maturation and function,” European Journal of Immunology, vol. 27, no. 5, pp. 1229–1235, 1997. View at Scopus
  75. M. B. Lutz, R. M. Suri, M. Niimi, et al., “Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo,” European Journal of Immunology, vol. 30, no. 7, pp. 1813–1822, 2000.
  76. K. Inaba, M. Inaba, N. Romani et al., “Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1693–1702, 1992. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Garrigan, P. Moroni-Rawson, C. McMurray et al., “Functional comparison of spleen dendritic cells and dendritic cells cultured in vitro from bone marrow precursors,” Blood, vol. 88, no. 9, pp. 3508–3512, 1996. View at Scopus
  78. H. R. Turnquist, G. Raimondi, A. F. Zahorchak, R. T. Fischer, Z. Wang, and A. W. Thomson, “Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance,” The Journal of Immunology, vol. 178, no. 11, pp. 7018–7031, 2007. View at Scopus
  79. L. Ma, S. Qian, X. Liang et al., “Prevention of diabetes in NOD mice by administration of dendritic cells deficient in nuclear transcription factor-κB activity,” Diabetes, vol. 52, no. 8, pp. 1976–1985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. C. A. Bonham, L. Peng, X. Liang et al., “Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-κB oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig,” The Journal of Immunology, vol. 169, no. 6, pp. 3382–3391, 2002. View at Scopus
  81. W. P. Min, R. Gorczynski, X. Y. Huang et al., “Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival,” The Journal of Immunology, vol. 164, no. 1, pp. 161–167, 2000. View at Scopus
  82. L. Lu, W. C. Lee, T. Takayama et al., “Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-β, and CTLA4Ig),” Journal of Leukocyte Biology, vol. 66, no. 2, pp. 293–296, 1999. View at Scopus
  83. L. Lu, A. Gambotto, W. C. Lee et al., “Adenoviral delivery of CTLA4lg into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients,” Gene Therapy, vol. 6, no. 4, pp. 554–563, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Almand, J. I. Clark, E. Nikitina et al., “Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer,” The Journal of Immunology, vol. 166, no. 1, pp. 678–689, 2001. View at Scopus
  85. C. M. Diaz-Montero, M. L. Salem, M. I. Nishimura, E. Garrett-Mayer, D. J. Cole, and A. J. Montero, “Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 49–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Peranzoni, S. Zilio, I. Marigo et al., “Myeloid-derived suppressor cell heterogeneity and subset definition,” Current Opinion in Immunology, vol. 22, no. 2, pp. 238–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Kusmartsev, Y. Nefedova, D. Yoder, and D. I. Gabrilovich, “Antigen-Specific Inhibition of CD8+ T Cell Response by Immature Myeloid Cells in Cancer Is Mediated by Reactive Oxygen Species,” The Journal of Immunology, vol. 172, no. 2, pp. 989–999, 2004. View at Scopus
  89. V. Bronte and P. Zanovello, “Regulation of immune responses by L-arginine metabolism,” Nature Reviews Immunology, vol. 5, no. 8, pp. 641–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. B. Zhu, Y. Bando, S. Xiao et al., “CD11b+Ly-6Chi suppressive monocytes in experimental autoimmune encephalomyelitis,” The Journal of Immunology, vol. 179, no. 8, pp. 5228–5237, 2007. View at Scopus
  91. D. Ilkovitch and D. M. Lopez, “Immune modulation by melanoma-derived factors,” Experimental Dermatology, vol. 17, no. 12, pp. 977–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. V. Greifenberg, E. Ribechini, S. Rößner, and M. B. Lutz, “Myeloid-derived suppressor cell activation by combined LPS and IFN-γ treatment impairs DC development,” European Journal of Immunology, vol. 39, no. 10, pp. 2865–2876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. V. Bronte, “Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions,” European Journal of Immunology, vol. 39, no. 10, pp. 2670–2672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Serafini, R. Carbley, K. A. Noonan, G. Tan, V. Bronte, and I. Borrello, “High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells,” Cancer Research, vol. 64, no. 17, pp. 6337–6343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Gabrilovich, T. Ishida, T. Oyama et al., “Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo,” Blood, vol. 92, no. 11, pp. 4150–4166, 1998. View at Scopus
  96. S. K. Bunt, P. Sinha, V. K. Clements, J. Leips, and S. Ostrand-Rosenberg, “Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression,” The Journal of Immunology, vol. 176, no. 1, pp. 284–290, 2006. View at Scopus
  97. S. K. Bunt, L. Yang, P. Sinha, V. K. Clements, J. Leips, and S. Ostrand-Rosenberg, “Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression,” Cancer Research, vol. 67, no. 20, pp. 10019–10026, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Song, Y. Krelin, T. Dvorkin et al., “CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1β-secreting cells,” The Journal of Immunology, vol. 175, no. 12, pp. 8200–8208, 2005. View at Scopus
  99. S. Nagaraj and D. I. Gabrilovich, “Tumor escape mechanism governed by myeloid-derived suppressor cells,” Cancer Research, vol. 68, no. 8, pp. 2561–2563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. J. G. Cripps and J. D. Gorham, “MDSC in autoimmunity,” International Immunopharmacology, vol. 11, no. 7, pp. 789–793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. J. A. Van Ginderachter, A. Beschin, P. De Baetselier, and G. Raes, “Myeloid-derived suppressor cells in parasitic infections,” European Journal of Immunology, vol. 40, no. 11, pp. 2976–2985, 2010. View at Scopus
  102. P. C. Rodriguez, A. H. Zea, K. S. Culotta, J. Zabaleta, and J. B. Ochoa Augusto C Ochoa, “Regulation of T cell receptor CD3ζ chain expression by L-arginine,” The Journal of Biological Chemistry, vol. 277, no. 24, pp. 21123–21129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. K. J. Peyton, D. Ensenat, M. A. Azam, et al., “Arginase promotes neointima formation in rat injured carotid arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 4, pp. 488–494, 2009.
  104. R. M. Bingisser, P. A. Tilbrook, P. G. Holt, and U. R. Kees, “Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway,” The Journal of Immunology, vol. 160, no. 12, pp. 5729–5734, 1998. View at Scopus
  105. O. Harari and J. K. Liao, “Inhibition of MHC II gene transcription by nitric oxide and antioxidants,” Current Pharmaceutical Design, vol. 10, no. 8, pp. 893–898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. H. T. Chung, H. O. Pae, B. M. Choi, T. R. Billiar, and Y. M. Kim, “Breakthroughs and views: nitric oxide as a bioregulator of apoptosis,” Biochemical and Biophysical Research Communications, vol. 282, no. 5, pp. 1075–1079, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Nagaraj, K. Gupta, V. Pisarev et al., “Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer,” Nature Medicine, vol. 13, no. 7, pp. 828–835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Ostrand-Rosenberg and P. Sinha, “Myeloid-derived suppressor cells: linking inflammation and cancer,” The Journal of Immunology, vol. 182, no. 8, pp. 4499–4506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. A. S. Dugast, T. Haudebourg, F. Coulon et al., “Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector t cell expansion,” The Journal of Immunology, vol. 180, no. 12, pp. 7898–7906, 2008. View at Scopus
  110. V. De Wilde, N. Van Rompaey, M. Hill et al., “Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1,” American Journal of Transplantation, vol. 9, no. 9, pp. 2034–2047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. H.-S. Chou, C.-C. Hsieh, R. Charles, et al., “Myeloid-derived suppressor cells protect islet transplants by b7-h1 mediated enhancement of T regulatory cells,” Transplantation, vol. 93, no. 3, pp. 272–282, 2012.
  112. H. S. Chou, C. C. Hsieh, H. R. Yang et al., “Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice,” Hepatology, vol. 53, no. 3, pp. 1007–1019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Golshayan, J. C. Wyss, C. W. Abulker et al., “Transplantation tolerance induced by regulatory T cells: in vivo mechanisms and sites of action,” International Immunopharmacology, vol. 9, no. 6, pp. 683–688, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. D. Golshayan, S. Jiang, J. Tsang, M. I. Garin, C. Mottet, and R. I. Lechler, “In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance,” Blood, vol. 109, no. 2, pp. 827–835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Graca, S. P. Cobbold, and H. Waldmann, “Identification of regulatory T cells in tolerated allografts,” Journal of Experimental Medicine, vol. 195, no. 12, pp. 1641–1646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Jiang, Ed., Regulatory T Cells and Clinical Application, Springer, New York, NY, USA, 2009.
  117. S. Z. Josefowicz and A. Rudensky, “Control of regulatory T cell lineage commitment and maintenance,” Immunity, vol. 30, no. 5, pp. 616–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. C. A. Piccirillo, E. d'Hennezel, E. Sgouroudis, and E. Yurchenko, “CD4+Foxp3+ regulatory T cells in the control of autoimmunity: in vivo veritas,” Current Opinion in Immunology, vol. 20, no. 6, pp. 655–662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Carreras, A. Lopez-Guillermo, B. C. Fox et al., “High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma,” Blood, vol. 108, no. 9, pp. 2957–2964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Li, X. Zhao, D. Cheng et al., “The presence of Foxp3 expressing T cells within grafts of tolerant human liver transplant recipients,” Transplantation, vol. 86, no. 12, pp. 1837–1843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Spoerl and X. C. Li, “Regulatory T cells and the quest for transplant tolerance,” Discovery Medicine, vol. 11, no. 56, pp. 25–34, 2011. View at Scopus
  122. M. Noris, F. Casiraghi, M. Todeschini et al., “Regulatory T cells and T cell depletion: role of immunosuppressive drugs,” Journal of the American Society of Nephrology, vol. 18, no. 3, pp. 1007–1018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Maeda, A. Schwarz, K. Kernebeck et al., “Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T cells,” The Journal of Immunology, vol. 174, no. 10, pp. 5968–5976, 2005. View at Scopus
  124. Z. Wang, A. T. Larregina, W. J. Shufesky et al., “Use of the inhibitory effect of apoptotic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells,” American Journal of Transplantation, vol. 6, no. 6, pp. 1297–1311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. P. T. Walsh, D. K. Taylor, and L. A. Turka, “Tregs and transplantation tolerance,” The Journal of Clinical Investigation, vol. 114, no. 10, pp. 1398–1403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Zhang, B. Schröppel, G. Lal et al., “Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response,” Immunity, vol. 30, no. 3, pp. 458–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Giraud, B. Barrou, S. Sebillaud, P. Debré, D. Klatzmann, and V. Thomas-Vaslin, “Transient depletion of dividing T lymphocytes in mice induces the emergence of regulatory T cells and dominant tolerance to islet allografts,” American Journal of Transplantation, vol. 8, no. 5, pp. 942–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. W. Li, K. Carper, Y. Liang et al., “Anti-CD25 mAb administration prevents spontaneous liver transplant tolerance,” Transplantation Proceedings, vol. 38, no. 10, pp. 3207–3208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. X. X. Zheng, A. Sánchez-Fueyo, M. Sho, C. Domenig, M. H. Sayegh, and T. B. Strom, “Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance,” Immunity, vol. 19, no. 4, pp. 503–514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  131. D. S. Segundo, J. C. Ruiz, M. Izquierdo et al., “Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+Foxp3+ regulatory T cells in renal transplant recipients,” Transplantation, vol. 82, no. 4, pp. 550–557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. J. J. A. Coenen, H. J. P. M. Koenen, E. van Rijssen et al., “Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+CD25+FoxP3+ T cells,” Bone Marrow Transplantation, vol. 39, no. 9, pp. 537–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. J. L. Riley, C. H. June, and B. R. Blazar, “Human T regulatory cell therapy: take a billion or so and call me in the morning,” Immunity, vol. 30, no. 5, pp. 656–665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. B. Dresske, X. Lin, D. S. Huang, X. Zhou, and F. Fändrich, “Spontaneous tolerance: experience with the rat liver transplant model,” Human Immunology, vol. 63, no. 10, pp. 853–861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. I. N. Crispe, M. Giannandrea, I. Klein, B. John, B. Sampson, and S. Wuensch, “Cellular and molecular mechanisms of liver tolerance,” Immunological Reviews, vol. 213, no. 1, pp. 101–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. G. Tiegs and A. W. Lohse, “Immune tolerance: what is unique about the liver,” Journal of Autoimmunity, vol. 34, no. 1, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. M. C. Yu, C. H. Chen, X. Liang et al., “Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice,” Hepatology, vol. 40, no. 6, pp. 1312–1321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. Q. You, L. Cheng, R. M. Kedl, and C. Ju, “Mechanism of T cell tolerance induction by murine hepatic Kupffer cells,” Hepatology, vol. 48, no. 3, pp. 978–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Morita, M. Fujino, G. Jiang et al., “PD-1/B7-H1 interaction contribute to the spontaneous acceptance of mouse liver allograft,” American Journal of Transplantation, vol. 10, no. 1, pp. 40–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. G. L. Bumgardner, D. Gao, J. Li, J. H. Baskin, M. Heininger, and C. G. Orosz, “Rejection responses to allogeneic hepatocytes by reconstituted SCID mice, CD4 KO, and CD8 KO mice1,2,” Transplantation, vol. 70, no. 12, pp. 1771–1780, 2000. View at Scopus
  141. G. L. Bumgardner and C. G. Orosz, “Unusual patterns of alloimmunity evoked by allogeneic liver parenchymal cells,” Immunological Reviews, vol. 174, pp. 260–279, 2000. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Geerts, “History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells,” Seminars in Liver Disease, vol. 21, no. 3, pp. 311–335, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Senoo, “Structure and function of hepatic stellate cells,” Medical Electron Microscopy, vol. 37, no. 1, pp. 3–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Sato, S. Suzuki, and H. Senoo, “Hepatic stellate cells: unique characteristics in cell biology and phenotype,” Cell Structure and Function, vol. 28, no. 2, pp. 105–112, 2003. View at Scopus
  145. G. Jiang, H. R. Yang, L. Wang et al., “Hepatic stellate cells preferentially expand allogeneic CD4+CD25+FoxP3+ regulatory T cells in an IL-2-dependent manner,” Transplantation, vol. 86, no. 11, pp. 1492–1502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. H. R. Yang, H. S. Chou, X. Gu et al., “Mechanistic insights into immunomodulation by hepatic stellate cells in mice: a critical role of interferon-γ signaling,” Hepatology, vol. 50, no. 6, pp. 1981–1991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. C. H. Chen, L. M. Kuo, Y. Chang et al., “In vivo immune modulatory activity of hepatic stellate cells in mice,” Hepatology, vol. 44, no. 5, pp. 1171–1181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. B. Huang, P. Y. Pan, Q. Li et al., “Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host,” Cancer Research, vol. 66, no. 2, pp. 1123–1131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. D. Benten, V. Kumaran, B. Joseph et al., “Hepatocyte transplantation activates hepatic stellate cells with beneficial modulation of cell engraftment in the rat,” Hepatology, vol. 42, no. 5, pp. 1072–1081, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. W. Suarez-Pinzon, G. S. Korbutt, R. Power, J. Hooton, R. V. Rajotte, and A. Rabinovitch, “Testicular Sertoli cells protect islet β-cells from autoimmune destruction in NOD mice by a transforming growth factor-β1-dependent mechanism,” Diabetes, vol. 49, no. 11, pp. 1810–1818, 2000. View at Scopus
  151. H. Yang and J. R. Wright, “Co-encapsulation of sertoli enriched testicular cell fractions further prolongs fish-to-mouse islet xenograft survival,” Transplantation, vol. 67, no. 6, pp. 815–820, 1999. View at Scopus
  152. D. F. Emerich, R. Hemendinger, and C. R. Halberstadt, “The testicular-derived sertoli cell: cellular immunoscience to enable transplantation,” Cell Transplantation, vol. 12, no. 4, pp. 335–349, 2003. View at Scopus
  153. C. Halberstadt, D. F. Emerich, and P. Gores, “Use of Sertoli cell transplants to provide local immunoprotection for tissue grafts,” Expert Opinion on Biological Therapy, vol. 4, no. 6, pp. 813–825, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. G. S. Korbutt, J. F. Elliott, and R. V. Rajotte, “Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression,” Diabetes, vol. 46, no. 2, pp. 317–322, 1997. View at Scopus
  155. P. Mital, G. Kaur, and J. M. Dufour, “Immunoprotective Sertoli cells: making allogeneic and xenogeneic transplantation feasible,” Reproduction, vol. 139, no. 3, pp. 495–504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. Q. A. Ramji, K. Bayrack, H. Arefanian, et al., “Protection of porcine islet xenografts in mice using sertoli cells and monoclonal antibodies,” Transplantation, vol. 92, no. 12, pp. 1309–1315, 2011.
  157. F. Fallarino, G. Luca, M. Calvitti et al., “Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone,” Journal of Experimental Medicine, vol. 206, no. 11, pp. 2511–2526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. H. P. Selawry and D. F. Cameron, “Sertoli cell-enriched fractions in successful islet cell transplantation,” Cell Transplantation, vol. 2, no. 2, pp. 123–129, 1993. View at Scopus
  159. P. De Cesaris, A. Filippini, C. Cervelli et al., “Immunosuppressive molecules produced by Sertoli cells cultured in vitro: biological effects on lymphocytes,” Biochemical and Biophysical Research Communications, vol. 186, no. 3, pp. 1639–1646, 1992. View at Scopus
  160. H. M. Lee, C. O. Byoung, D. P. Lim et al., “Mechanism of humoral and cellular immune modulation provided by porcine Sertoli cells,” Journal of Korean Medical Science, vol. 23, no. 3, pp. 514–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. H. P. Selawry and K. Whittington, “Extended allograft survival of islets grafted into intra-abdominally placed testis,” Diabetes, vol. 33, no. 4, pp. 405–406, 1984. View at Scopus
  162. H. P. Selawry and K. B. Whittington, “Prolonged intratesticular islet allograft survival in not dependent on local steroidogenesis,” Hormone and Metabolic Research, vol. 20, no. 9, pp. 562–565, 1988. View at Scopus
  163. Z. Yin, D. Chen, F. Hu et al., “Cotransplantation with xenogenetic neonatal porcine Sertoli cells significantly prolongs islet allograft survival in nonimmunosuppressive rats,” Transplantation, vol. 88, no. 3, pp. 339–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. R. A. Valdés-González, L. M. Dorantes, G. N. Garibay et al., “Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study,” European Journal of Endocrinology, vol. 153, no. 3, pp. 419–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  165. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  166. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  167. Y. Ding, D. Xu, G. Feng, A. Bushell, R. J. Muschel, and K. J. Wood, “Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9,” Diabetes, vol. 58, no. 8, pp. 1797–1806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. J. M. Ryan, F. P. Barry, J. M. Murphy, and B. P. Mahon, “Mesenchymal stem cells avoid allogeneic rejection,” Journal of Inflammation, vol. 2, no. 1, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. P. Fiorina, M. Jurewicz, A. Augello et al., “Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes,” The Journal of Immunology, vol. 183, no. 2, pp. 993–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. F. Casiraghi, N. Azzollini, P. Cassis et al., “Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells,” The Journal of Immunology, vol. 181, no. 6, pp. 3933–3946, 2008. View at Scopus
  171. D. M. Berman, M. A. Willman, D. Han et al., “Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates,” Diabetes, vol. 59, no. 10, pp. 2558–2568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. D. Baksh, L. Song, and R. S. Tuan, “Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy,” Journal of Cellular and Molecular Medicine, vol. 8, no. 3, pp. 301–316, 2004. View at Scopus
  173. A. Bartholomew, C. Sturgeon, M. Siatskas et al., “Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo,” Experimental Hematology, vol. 30, no. 1, pp. 42–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  174. S. Inoue, F. C. Popp, G. E. Koehl et al., “Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model,” Transplantation, vol. 81, no. 11, pp. 1589–1595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. F. E. Ezquer, M. E. Ezquer, D. B. Parrau, D. Carpio, A. J. Yañez, and P. A. Conget, “Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice,” Biology of Blood and Marrow Transplantation, vol. 14, no. 6, pp. 631–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. V. Sordi, M. L. Malosio, F. Marchesi et al., “Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets,” Blood, vol. 106, no. 2, pp. 419–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. V. Sordi, R. Melzi, A. Mercalli et al., “Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function,” Stem Cells, vol. 28, no. 1, pp. 140–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. C. L. Rackham, P. C. Chagastelles, N. B. Nardi, A. C. Hauge-Evans, P. M. Jones, and A. J. F. King, “Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice,” Diabetologia, vol. 54, no. 5, pp. 1127–1135, 2011. View at Publisher · View at Google Scholar · View at Scopus