About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2012 (2012), Article ID 397693, 6 pages
http://dx.doi.org/10.1155/2012/397693
Review Article

Role of Inhaled Steroids in Vascular Airway Remodelling in Asthma and COPD

Department of Clinical and Experimental Medicine, Respiratory Disease and Lung Function Unit, University of Parma, Padiglione Rasori, Azienda Ospedaliero-Universitaria, Viale Rasori 10, 43125 Parma, Italy

Received 11 July 2012; Revised 5 September 2012; Accepted 10 September 2012

Academic Editor: Andrew Chan

Copyright © 2012 Alfredo Chetta and Dario Olivieri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Chetta, A. Zanini, A. Foresi et al., “Vascular component of airway remodeling in asthma is reduced by high dose of fluticasone,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 5, pp. 751–757, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. K. Jeffery, “Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 1, no. 3, pp. 176–183, 2004. View at Scopus
  3. M. Hashimoto, H. Tanaka, and S. Abe, “Quantitative analysis of bronchial wall vascularity in the medium and small airways of patients with asthma and COPD,” Chest, vol. 127, no. 3, pp. 965–972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Zanini, A. Chetta, M. Saetta et al., “Bronchial vascular remodelling in patients with COPD and its relationship with inhaled steroid treatment,” Thorax, vol. 64, no. 12, pp. 1019–1024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. G. Carroll, C. Cooke, and A. L. James, “Bronchial blood vessel dimensions in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 2, pp. 689–695, 1997. View at Scopus
  6. A. Chetta, A. Foresi, M. Del Donno, G. Bertorelli, A. Pesci, and D. Olivieri, “Airways remodeling is a distinctive feature of asthma and is related to severity of disease,” Chest, vol. 111, no. 4, pp. 852–857, 1997. View at Scopus
  7. A. Chetta, E. Marangio, and D. Olivieri, “Inhaled steroids and airway remodelling in asthma,” Acta Biomedica de l'Ateneo Parmense, vol. 74, no. 3, pp. 121–125, 2003. View at Scopus
  8. J. W. Wilson and T. Kotsimbos, “Airway vascular remodeling in asthma,” Current Allergy and Asthma Reports, vol. 3, no. 2, pp. 153–158, 2003. View at Scopus
  9. A. T. Mariassy, H. Gazeroglu, and A. Wanner, “Morphometry of the subepithelial circulation in sheep airways: effect of vascular congestion,” American Review of Respiratory Disease, vol. 143, no. 1, pp. 162–166, 1991. View at Scopus
  10. S. D. Kumar, M. J. Emery, N. D. Atkins, I. Danta, and A. Wanner, “Airway mucosal blood flow in bronchial asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 1, pp. 153–156, 1998. View at Scopus
  11. A. Wanner and E. S. Mendes, “Airway endothelial dysfunction in asthma and chronic obstructive pulmonary disease: a challenge for future research,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 11, pp. 1344–1351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Zanini, A. Chetta, A. S. Imperatori, A. Spanevello, and D. Olivieri, “The role of the bronchial microvasculature in the airway remodelling in asthma and COPD,” Respiratory Research, vol. 11, article 132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Detoraki, F. Granata, S. Staibano, F. W. Rossi, G. Marone, and A. Genovese, “Angiogenesis and lymphangiogenesis in bronchial asthma,” Allergy, vol. 65, no. 8, pp. 946–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Wanner, A. D. Chediak, and M. E. Csete, “Airway mucosal blood flow: response to autonomic and inflammatory stimuli,” European Respiratory Journal, vol. 3, no. 12, pp. 618s–623s, 1990. View at Scopus
  15. M. E. Csete, A. D. Chediak, W. M. Abraham, and A. Wanner, “Airway blood flow modifies allergic airway smooth muscle contraction,” American Review of Respiratory Disease, vol. 144, no. 1, pp. 59–63, 1991. View at Scopus
  16. Y. H. Khor, A. K. Y. Teoh, S. M. Lam et al., “Increased vascular permeability precedes cellular inflammation as asthma control deteriorates,” Clinical and Experimental Allergy, vol. 39, no. 11, pp. 1659–1667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature, vol. 407, no. 6801, pp. 242–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hoshino, M. Takahashi, and N. Aoike, “Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis,” Journal of Allergy and Clinical Immunology, vol. 107, no. 2, pp. 295–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Chetta, A. Zanini, A. Foresi et al., “Vascular endothelial growth factor up-regulation and bronchial wall remodelling in asthma,” Clinical and Experimental Allergy, vol. 35, no. 11, pp. 1437–1442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Suzuma, K. Naruse, I. Suzuma et al., “Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-Akt-dependent pathways in retinal vascular cells,” Journal of Biological Chemistry, vol. 275, no. 52, pp. 40725–40731, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. A. S. Kazi, S. Lotfi, E. A. Goncharova et al., “Vascular endothelial growth factor-induced secretion of fibronectin is ERK dependent,” American Journal of Physiology, vol. 286, no. 3, pp. L539–L545, 2004. View at Scopus
  22. A. Zanini, A. Chetta, M. Saetta et al., “Chymase-positive mast cells play a role in the vascular component of airway remodeling inasthma,” Journal of Allergy and Clinical Immunology, vol. 120, no. 2, pp. 329–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Milanese, E. Crimi, A. Scordamaglia et al., “On the functional consequences of bronchial basement membrane thickening,” Journal of Applied Physiology, vol. 91, no. 3, pp. 1035–1040, 2001. View at Scopus
  24. C. Bergeron and L. P. Boulet, “Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation,” Chest, vol. 129, no. 4, pp. 1068–1087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Vrugt, S. Wilson, A. Bron, S. T. Holgate, R. Djukanovic, and R. Aalbers, “Bronchial angiogenesis in severe glucocorticoid-dependent asthma,” European Respiratory Journal, vol. 15, no. 6, pp. 1014–1021, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Salvato, “Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects,” Thorax, vol. 56, no. 12, pp. 902–906, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. B. E. Orsida, X. Li, B. Hickey, F. Thien, J. W. Wilson, and E. H. Walters, “Vascularity in asthmatic airways: relation to inhaled steroid dose,” Thorax, vol. 54, no. 4, pp. 289–295, 1999. View at Scopus
  28. K. Kuwano, C. H. Bosken, P. D. Pare, T. R. Bai, B. R. Wiggs, and J. C. Hogg, “Small airways dimensions in asthma and in chronic obstructive pulmonary disease,” American Review of Respiratory Disease, vol. 148, no. 5, pp. 1220–1225, 1993. View at Scopus
  29. C. Calabrese, V. Bocchino, A. Vatrella et al., “Evidence of angiogenesis in bronchial biopsies of smokers with and without airway obstruction,” Respiratory Medicine, vol. 100, no. 8, pp. 1415–1422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Soldi, S. Mitola, M. Strasly, P. Defilippi, G. Tarone, and F. Bussolino, “Role of α(v)β3 integrin in the activation of vascular endothelial growth factor receptor-2,” EMBO Journal, vol. 18, no. 4, pp. 882–892, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. G. H. Mahabeleshwar, W. Feng, K. Reddy, E. F. Plow, and T. V. Byzova, “Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis,” Circulation Research, vol. 101, no. 6, pp. 570–580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Soltani, D. W. Reid, S. S. Sohal et al., “Basement membrane and vascular remodelling in smokers and chronic obstructive pulmonary disease: a cross-sectional study,” Respiratory Research, vol. 11, article 105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. R. Kranenburg, W. I. De Boer, V. K. T. Alagappan, P. J. Sterk, and H. S. Sharma, “Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease,” Thorax, vol. 60, no. 2, pp. 106–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. E. S. Mendes, M. A. Campos, and A. Wanner, “Airway blood flow reactivity in healthy smokers and in ex-smokers with or without COPD,” Chest, vol. 129, no. 4, pp. 893–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Paredi, S. Ward, D. Cramer, P. J. Barnes, and S. A. Kharitonov, “Normal bronchial blood flow in COPD is unaffected by inhaled corticosteroids and correlates with exhaled nitric oxide,” Chest, vol. 131, no. 4, pp. 1075–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Chetta, A. Zanini, and D. Olivieri, “Therapeutic approach to vascular remodelling in asthma,” Pulmonary Pharmacology and Therapeutics, vol. 20, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. D. Kumar, J. L. Brieva, I. Danta, and A. Wanner, “Transient effect of inhaled fluticasone on airway mucosal blood flow in subjects with and without asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3 I, pp. 918–921, 2000. View at Scopus
  38. G. Horvath and A. Wanner, “Inhaled corticosteroids: effects on the airway vasculature in bronchial asthma,” European Respiratory Journal, vol. 27, no. 1, pp. 172–187, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Rascher, R. Dietz, and A. Schomig, “Reversal of corticosterone-induced supersensitivity of vascular smooth muscle to noradrenaline by arachidonic acid and prostacyclin,” European Journal of Pharmacology, vol. 68, no. 3, pp. 267–273, 1980. View at Scopus
  40. E. S. Mendes, A. Pereira, I. Danta, R. C. Duncan, and A. Wanner, “Comparative bronchial vasoconstrictive efficacy of inhaled glucocorticosteroids,” European Respiratory Journal, vol. 21, no. 6, pp. 989–993, 2003. View at Scopus
  41. A. Hafezi-Moghadam, T. Simoncini, Z. Yang et al., “Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase,” Nature Medicine, vol. 8, no. 5, pp. 473–479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. Brieva, I. Danta, and A. Wanner, “Effect of an inhaled glucocorticosteroid on airway mucosal blood flow in mild asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 1, pp. 293–296, 2000. View at Scopus
  43. M. Hoshino, M. Takahashi, Y. Takai, J. Sim, and N. Aoike, “Inhaled corticosteroids decrease vascularity of the bronchial mucosa in patients with asthma,” Clinical and Experimental Allergy, vol. 31, no. 5, pp. 722–730, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Asai, H. Kanazawa, H. Kamoi, S. Shiraishi, K. Hirata, and J. Yoshikawa, “Increased levels of vascular endothelial growth factor in induced sputum in asthmatic patients,” Clinical and Experimental Allergy, vol. 33, no. 5, pp. 595–599, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Kanazawa, S. Nomura, and K. Asai, “Roles of angiopoietin-1 and angiopoietin-2 on airway microvascular permeability in asthmatic patients,” Chest, vol. 131, no. 4, pp. 1035–1041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. B. E. Orsida, C. Ward, X. Li et al., “Effect of a long-acting β2-agonist over three months on airway wall vascular remodeling in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 1, pp. 117–121, 2001. View at Scopus
  47. E. S. Mendes, M. A. Campos, A. Hurtado, and A. Wanner, “Effect of montelukast and fluticasone propionate on airway mucosal blood flow in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 10, pp. 1131–1134, 2004. View at Scopus
  48. E. R. Sutherland and R. M. Cherniack, “Management of chronic obstructive pulmonary disease,” New England Journal of Medicine, vol. 350, no. 26, pp. 2689–2729, 2004. View at Publisher · View at Google Scholar · View at Scopus