About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2012 (2012), Article ID 414812, 7 pages
http://dx.doi.org/10.1155/2012/414812
Review Article

Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

1Department of Surgery, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
2Department of Pediatrics, University of British Columbia, 3100, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3

Received 2 November 2011; Accepted 24 February 2012

Academic Editor: Bashoo Naziruddin

Copyright © 2012 Xiaojie Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Diabetes Control and Complications Trial Research Group, “Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: diabetes control and complications trial. Diabetes Control and Complications Trial Research Group,” The Journal of pediatrics, vol. 125, no. 2, pp. 177–188, 1994.
  2. G. L. Warnock, N. M. Kneteman, E. A. Ryan et al., “Continued function of pancreatic islets after transplantation in type 1 diabetes,” The Lancet, vol. 2, no. 8662, pp. 570–572, 1989. View at Scopus
  3. D. M. Thompson, M. Meloche, Z. Ao et al., “Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy,” Transplantation, vol. 91, no. 3, pp. 373–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Fung, G. L. Warnock, Z. Ao et al., “The effect of medical therapy and islet cell transplantation on diabetic nephropathy: an interim report,” Transplantation, vol. 84, no. 1, pp. 17–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. J. Shapiro, J. R. T. Lakey, E. A. Ryan et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen,” The New England Journal of Medicine, vol. 343, no. 4, pp. 230–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. L. Warnock, Y. H. T. Liao, X. Wang et al., “An odyssey of islet transplantation for therapy of type 1 diabetes,” World Journal of Surgery, vol. 31, no. 8, pp. 1569–1576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Johnson, Z. Ao, P. Ao et al., “Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets,” Cell Transplantation, vol. 18, no. 8, pp. 833–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. M. Thompson, I. S. Begg, C. Harris et al., “Reduced progression of diabetic retinopathy after islet cell transplantation compared with intensive medical therapy,” Transplantation, vol. 85, no. 10, pp. 1400–1405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. L. Warnock, R. M. Meloche, D. Thompson et al., “Improved human pancreatic islet isolation for a prospective cohort study of islet transplantation vs best medical therapy in type 1 diabetes mellitus,” Archives of Surgery, vol. 140, no. 8, pp. 735–744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Cabrera, D. M. Berman, N. S. Kenyon, C. Ricordi, P. O. Berggren, and A. Caicedo, “The unique cytoarchitecture of human pancreatic islets has implications for islet cell function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2334–2339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza, and P. C. Butler, “β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes,” Diabetes, vol. 52, no. 1, pp. 102–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. E. Butler, L. Cao-Minh, R. Galasso et al., “Adaptive changes in pancreatic β cell fractional area and β cell turnover in human pregnancy,” Diabetologia, vol. 53, no. 10, pp. 2167–2176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Peshavaria, B. L. Larmie, J. Lausier et al., “Regulation of pancreatic β-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse,” Diabetes, vol. 55, no. 12, pp. 3289–3298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Thyssen, E. Arany, and D. J. Hill, “Ontogeny of regeneration of β-cells in the neonatal rat after treatment with streptozotocin,” Endocrinology, vol. 147, no. 5, pp. 2346–2356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Karumbayaram, B. G. Novitch, M. Patterson et al., “Directed differentiation of human-induced pluripotent stem cells generates active motor neurons,” Stem Cells, vol. 27, no. 4, pp. 806–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Kroon, L. A. Martinson, K. Kadoya et al., “Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo,” Nature Biotechnology, vol. 26, no. 4, pp. 443–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Chen, M. Borowiak, J. L. Fox et al., “A small molecule that directs differentiation of human ESCs into the pancreatic lineage,” Nature Chemical Biology, vol. 5, no. 4, pp. 258–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Alipio, W. Liao, E. J. Roemer et al., “Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13426–13431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Yang, S. Li, H. Hatch et al., “In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8078–8083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Sapir, K. Shternhall, I. Meivar-Levy et al., “Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7964–7969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Baeyens, S. de Breuck, J. Lardon, J. K. Mfopou, I. Rooman, and L. Bouwens, “In vitro generation of insulin-producing β cells from adult exocrine pancreatic cells,” Diabetologia, vol. 48, no. 1, pp. 49–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Zhou, J. Brown, A. Kanarek, J. Rajagopal, and D. A. Melton, “In vivo reprogramming of adult pancreatic exocrine cells to β-cells,” Nature, vol. 455, no. 7213, pp. 627–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Minami, M. Okuno, K. Miyawaki et al., “Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 42, pp. 15116–15121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Solar, C. Cardalda, I. Houbracken et al., “Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth,” Developmental Cell, vol. 17, no. 6, pp. 849–860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. P. Yang, F. Thorel, D. F. Boyer, P. L. Herrera, and C. V. Wright, “Context-specific alpha- to-β-cell reprogramming by forced Pdx1 expression,” Genes and Development, vol. 25, no. 16, pp. 1680–1685, 2011.
  26. F. Thorel, V. Nepote, I. Avril, et al., “Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss,” Nature, vol. 464, no. 7292, pp. 1149–1154, 2010.
  27. C. H. Chung, E. Hao, R. Piran, E. Keinan, and F. Levine, “Pancreatic β-cell neogenesis by direct conversion from mature α-cells,” Stem Cells, vol. 28, no. 9, pp. 1630–1638, 2010.
  28. E. Szabo, S. Rampalli, R. M. Risueno et al., “Direct conversion of human fibroblasts to multilineage blood progenitors,” Nature, vol. 468, no. 7323, pp. 521–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Vierbuchen, A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Sudhof, and M. Wernig, “Direct conversion of fibroblasts to functional neurons by defined factors,” Nature, vol. 463, no. 7284, pp. 1035–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ieda, J. D. Fu, P. Delgado-Olguin et al., “Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors,” Cell, vol. 142, no. 3, pp. 375–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Tateishi, J. He, O. Taranova, G. Liang, A. C. D'Alessio, and Y. Zhang, “Generation of insulin-secreting islet-like clusters from human skin fibroblasts,” The Journal of Biological Chemistry, vol. 283, no. 46, pp. 31601–31607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Jonsson, L. Carlsson, T. Edlund, and H. Edlund, “Insulin-promoter-factor 1 is required for pancreas development in mice,” Nature, vol. 371, no. 6498, pp. 606–609, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. M. F. Offield, T. L. Jetton, P. A. Labosky et al., “PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum,” Development, vol. 122, no. 3, pp. 983–995, 1996. View at Scopus
  34. D. A. Stoffers, J. Ferrer, W. L. Clarke, and J. F. Habener, “Early-onset type-II diabetes mellitus (MODY4) linked to IPF1,” Nature Genetics, vol. 17, no. 2, pp. 138–139, 1997. View at Scopus
  35. G. Gradwohl, A. Dierich, M. LeMeur, and F. Guillemot, “Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1607–1611, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Oliver-Krasinski and D. A. Stoffers, “On the origin of the β cell,” Genes and Development, vol. 22, no. 15, pp. 1998–2021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Gu, J. Dubauskaite, and D. A. Melton, “Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors,” Development, vol. 129, no. 10, pp. 2447–2457, 2002. View at Scopus
  38. X. Xu, J. D'Hoker, G. Stange et al., “β Cells can be generated from endogenous progenitors in injured adult mouse pancreas,” Cell, vol. 132, no. 2, pp. 197–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. J. Naya, H. P. Huang, Y. Qiu et al., “Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice,” Genes and Development, vol. 11, no. 18, pp. 2323–2334, 1997. View at Scopus
  40. B. Sosa-Pineda, K. Chowdhury, M. Torres, G. Oliver, and P. Gruss, “The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas,” Nature, vol. 386, no. 6623, pp. 399–402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. L. St-Onge, B. Sosa-Pineda, K. Chowdhury, A. Mansouri, and P. Gruss, “Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas,” Nature, vol. 387, no. 6631, pp. 406–409, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Collombat, A. Mansouri, J. Hecksher-Sorensen et al., “Opposing actions of Arx and Pax4 in endocrine pancreas development,” Genes and Development, vol. 17, no. 20, pp. 2591–2603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Collombat, J. Hecksher-Sorensen, J. Krull et al., “Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression,” The Journal of Clinical Investigation, vol. 117, no. 4, pp. 961–970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Hussain, C. P. Miller, and J. F. Habener, “Brn-4 transcription factor expression targeted to the early developing mouse pancreas induces ectopic glucagon gene expression in insulin-producing β cells,” The Journal of Biological Chemistry, vol. 277, no. 18, pp. 16028–16032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. R. S. Heller, D. A. Stoffers, A. Liu et al., “The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity,” Developmental Biology, vol. 268, no. 1, pp. 123–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Sander, L. Sussel, J. Conners, et al., “Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas,” Development, vol. 127, no. 24, pp. 5533–5540, 2000.
  47. L. Sussel, J. Kalamaras, D. J. Hartigan-O'Connor et al., “Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells,” Development, vol. 125, no. 12, pp. 2213–2221, 1998. View at Scopus
  48. C. Zhang, T. Moriguchi, M. Kajihara et al., “MafA is a key regulator of glucose-stimulated insulin secretion,” Molecular and Cellular Biology, vol. 25, no. 12, pp. 4969–4976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Artner, B. Blanchi, J. C. Raum et al., “MafB is required for islet β cell maturation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 3853–3858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. W. C. Li, J. M. Rukstalis, W. Nishimura et al., “Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats,” Journal of Cell Science, vol. 123, part 16, pp. 2792–2802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at Scopus