About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2012 (2012), Article ID 504904, 7 pages
http://dx.doi.org/10.1155/2012/504904
Research Article

Multigeneration Inheritance through Fertile XX Carriers of an NR0B1 (DAX1) Locus Duplication in a Kindred of Females with Isolated XY Gonadal Dysgenesis

1Department of Molecular Medicine and Surgery, Karolinska Institut, Karolinska University Hospital, CMM L8:02, 17176 Stockholm, Sweden
2Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield S 102 TH, UK

Received 31 August 2011; Revised 21 November 2011; Accepted 21 November 2011

Academic Editor: Gil Guerra-Junior

Copyright © 2012 Michela Barbaro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Bardoni, E. Zanaria, S. Guioli et al., “A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal,” Nature Genetics, vol. 7, no. 4, pp. 497–501, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Dabovic, E. Zanaria, B. Bardoni et al., “A family of rapidly evolving genes from the sex reversal critical region in Xp21,” Mammalian Genome, vol. 6, no. 9, pp. 571–580, 1995. View at Scopus
  3. A. Swain, E. Zanaria, A. Hacker, R. Lovell-Badge, and G. Camerino, “Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function,” Nature Genetics, vol. 12, no. 4, pp. 404–409, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. K. K. Niakan and E. R. B. McCabe, “DAX1 origin, function, and novel role,” Molecular Genetics and Metabolism, vol. 86, no. 1-2, pp. 70–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Swain, V. Narvaez, P. Burgoyne, G. Camerino, and R. Lovell-Badge, “Dax1 antagonizes Sry action in mammalian sex determination,” Nature, vol. 391, no. 6669, pp. 761–767, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. B. K. Jordan, M. Mohammed, S. T. Ching et al., “Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans,” American Journal of Human Genetics, vol. 68, no. 5, pp. 1102–1109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Ogata and N. Matsuo, “Sex determining gene on the X chromosome short arm: dosage sensitive sex reversal,” Acta Paediatrica Japonica, vol. 38, no. 4, pp. 390–398, 1996. View at Scopus
  8. D. Sanlaville, F. Vialard, F. Thépot et al., “Functional disomy of Xp including duplication of DAX1 gene with sex reversal due to t(X;Y)(p21.2;p11.3),” American Journal of Medical Genetics Part A, vol. 128, no. 3, pp. 325–330, 2004. View at Scopus
  9. M. Barbaro, M. Oscarson, J. Schoumans, J. Staaf, S. A. Ivarsson, and A. Wedell, “Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 8, pp. 3305–3313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Barbaro, A. Cicognani, A. Balsamo et al., “Gene dosage imbalances in patients with 46,XY gonadal DSD detected by an in-house-designed synthetic probe set for multiplex ligation-dependent probe amplification analysis,” Clinical Genetics, vol. 73, no. 5, pp. 453–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ledig, O. Hiort, G. Scherer et al., “Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci,” Human Reproduction, vol. 25, no. 10, pp. 2637–2646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. White, T. Ohnesorg, A. Notini et al., “Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis,” PLoS ONE, vol. 6, no. 3, Article ID e17793, 2011. View at Publisher · View at Google Scholar
  13. R. C. Allen, H. Y. Zoghbi, A. B. Moseley, H. M. Rosenblatt, and J. W. Belmont, “Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation,” American Journal of Human Genetics, vol. 51, no. 6, pp. 1229–1239, 1992. View at Scopus
  14. Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy algorithm for aligning DNA sequences,” Journal of Computational Biology, vol. 7, no. 1-2, pp. 203–214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Bailey, G. Liu, and E. E. Eichler, “An Alu transposition model for the origin and expansion of human segmental duplications,” American Journal of Human Genetics, vol. 73, no. 4, pp. 823–834, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Muscatelli, T. M. Strom, A. P. Walker et al., “Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congentia and hypogonadotropic hypogonadism,” Nature, vol. 372, no. 6507, pp. 672–676, 1994. View at Scopus
  17. D. A. Kleinjan and V. van Heyningen, “Long-range control of gene expression: emerging mechanisms and disruption in disease,” American Journal of Human Genetics, vol. 76, no. 1, pp. 8–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Smyk, J. S. Berg, A. Pursley et al., “Male-to-female sex reversal associated with an ~250 kb deletion upstream of NR0B1 (DAX1),” Human Genetics, vol. 122, no. 1, pp. 63–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Skinningsrud, E. S. Husebye, G. D. Gilfillan et al., “X-linked congenital adrenal hypoplasia with hypogonadotropic hypogonadism caused by an inversion disrupting a conserved noncoding element upstream of the NR0B1 (DAX1) gene,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 10, pp. 4086–4093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Carrié, L. Jun, T. Bienvenu et al., “A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation,” Nature Genetics, vol. 23, no. 1, pp. 25–31, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Bernstein, T. Jenkins, B. Dawson, et al., “Female phenotype and multiple abnormalities in sibs with a Y chromosome and partial X chromosome duplication: H—Y antigen and Xg blood group findings,” Journal of Medical Genetics, vol. 17, no. 4, pp. 291–300, 1980. View at Scopus
  22. G. Scherer, W. Schempp, C. Baccichetti et al., “Duplication of an Xp segment that includes the ZFX locus causes sex inversion in man,” Human Genetics, vol. 81, no. 3, pp. 291–294, 1989. View at Scopus