About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2012 (2012), Article ID 584807, 8 pages
http://dx.doi.org/10.1155/2012/584807
Review Article

Molecular Bases and Phenotypic Determinants of Aromatase Excess Syndrome

1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagaya, Tokyo 157-8535, Japan
2Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 206-8670, Japan
3Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan

Received 9 July 2011; Revised 22 September 2011; Accepted 2 October 2011

Academic Editor: Rodolfo Rey

Copyright © 2012 Maki Fukami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Bhasin, “Testicular disorders,” in Williams Textbook of Endocrinology, H. M. Kronenberg, M. Melmed, K. S. Polonsky, and P. R. Larsen, Eds., pp. 645–699, Saunders, Philadelphia, Pa, USA, 11th edition, 2008.
  2. M. Shozu, S. Sebastian, K. Takayama et al., “Estrogen excess associated with novel gain-of-function mutations affecting the aromatase gene,” New England Journal of Medicine, vol. 348, no. 19, pp. 1855–1865, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. Demura, R. M. Martin, M. Shozu et al., “Regional rearrangements in chromosome 15q21 cause formation of cryptic promoters for the CYP19 (aromatase) gene,” Human Molecular Genetics, vol. 16, no. 21, pp. 2529–2541, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M Fukami, M Shozu, S Soneda, et al., “Aromatase excess syndrome: identification of cryptic duplications and deletions leading to gain of function of CYP19A1 and assessment of phenotypic determinants,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 6, pp. E1035–E1043, 2011.
  5. G. Binder, D. I. Iliev, A. Dufke et al., “Dominant transmission of prepubertal gynecomastia due to serum estrone excess: Hormonal, biochemical, and genetic analysis in a large kindred,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 1, pp. 484–492, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. R. M. Martin, C. J. Lin, M. Y. Nishi et al., “Familial hyperestrogenism in both sexes: clinical, hormonal, and molecular studies of two siblings,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3027–3034, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Tilpakov, N. Kalintchenko, T. Semitcheva, et al., “A potential rearrangement between CYP19 and TRPM7 genes on chromosome 15q21.2 as a cause of aromatase excess syndrome,” The Journal of Clinical Endocrinology & Metabolism, vol. 90, pp. 4184–4190, 2005.
  8. C. A. Stratakis, A. Vottero, A. Brodie et al., “The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant p450 aromatase gene transcription,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 4, pp. 1348–1357, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sebastian and S. E. Bulun, “Genetics of endocrine disease: a highly complex organization of the regulatory region of the human CYP19 (Aromatase) gene revealed by the human genome project,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 4600–4602, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Bulun, K. Takayama, T. Suzuki, H. Sasano, B. Yilmaz, and S. Sebastian, “Organization of the human aromatase P450 (CYP19) gene,” Seminars in Reproductive Medicine, vol. 22, no. 1, pp. 5–9, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Demura, S. Reierstad, J. E. Innes, and S. E. Bulun, “Novel promoter I.8 and promoter usage in the CYP19 (aromatase) gene,” Reproductive Sciences, vol. 15, no. 10, pp. 1044–1053, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. N. Harada, T. Utsumi, and Y. Takagi, “Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 11312–11316, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. E. R. Simpson, “Aromatase: biologic relevance of tissue-specific expression,” Seminars in Reproductive Medicine, vol. 22, no. 1, pp. 11–23, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. E. Wallach and C. R. Garcia, “Familial gynecomastia without hypogonadism: a report of three cases in one family,” The Journal of Clinical Endocrinology and Metabolism, vol. 22, pp. 1201–1206, 1962. View at Scopus
  15. G. D. Berkovitz, A. Guerami, T. R. Brown, P. C. MacDonald, and C. J. Migeon, “Familial gynecomastia with increased extraglandular aromatization of plasma carbon19-steroids,” The Journal of Clinical Investigation, vol. 75, no. 6, pp. 1763–1769, 1985.
  16. W. Gu, F. Zhang, and J. R. Lupski, “Mechanisms for human genomic rearrangements,” Pathogenetics, vol. 1, article 4, 2008.
  17. M. B. Yilmaz, A. Wolfe, Y. H. Cheng, C. Glidewell-Kenney, J. L. Jameson, and S. E. Bulun, “Aromatase promoter I.f is regulated by estrogen receptor alpha (ESR1) in mouse hypothalamic neuronal cell lines,” Biology of Reproduction, vol. 81, no. 5, pp. 956–965, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. E. Mercer, D. J. Phillips, and I. J. Clarke, “Short-term regulation of gonadotropin subunit mRNA levels by estrogen: studies in the hypothalamo-pituitary intact and hypothalamo-pituitary disconnected ewe,” Journal of Neuroendocrinology, vol. 5, no. 5, pp. 591–596, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. D. C. Alexander and W. L. Miller, “Regulation of ovine follicle-stimulating hormone β-chain mRNA by 17β-estradiol in vivo and in vitro,” Journal of Biological Chemistry, vol. 257, no. 5, pp. 2282–2286, 1982. View at Scopus
  20. T. R. Kumar, Y. Wang, N. Lu, and M. M. Matzuk, “Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility,” Nature Genetics, vol. 15, no. 2, pp. 201–204, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus