About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2012 (2012), Article ID 925143, 8 pages
http://dx.doi.org/10.1155/2012/925143
Review Article

Chemical Methods to Induce Beta-Cell Proliferation

Chemical Biology Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA

Received 19 March 2012; Accepted 21 May 2012

Academic Editor: A. N. Balamurugan

Copyright © 2012 Amedeo Vetere and Bridget K. Wagner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza, and P. C. Butler, “β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes,” Diabetes, vol. 52, no. 1, pp. 102–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. J. Shapiro, C. Ricordi, B. J. Hering et al., “International trial of the Edmonton protocol for islet transplantation,” New England Journal of Medicine, vol. 355, no. 13, pp. 1318–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Meier, A. E. Butler, Y. Saisho et al., “β-cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans,” Diabetes, vol. 57, no. 6, pp. 1584–1594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Dor, J. Brown, O. I. Martinez, and D. A. Melton, “Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation,” Nature, vol. 429, no. 6987, pp. 41–46, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Keenan, J. K. Sun, J. Levine et al., “Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: joslin medalist study,” Diabetes, vol. 59, no. 11, pp. 2846–2853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Bonner-Weir, D. Deery, J. L. Leahy, and G. C. Weir, “Compensatory growth of pancreatic β-cells in adult rats after short-term glucose infusion,” Diabetes, vol. 38, no. 1, pp. 49–53, 1989. View at Scopus
  7. G. Kwon, C. A. Marshall, K. L. Pappan, M. S. Remedi, and M. L. McDaniel, “Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets,” Diabetes, vol. 53, supplement 3, pp. S225–S232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. C. Alonso, T. Yokoe, P. Zhang et al., “Glucose infusion in mice: a new model to induce β-cell replication,” Diabetes, vol. 56, no. 7, pp. 1792–1801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. E. Levitt, T. J. Cyphert, J. L. Pascoe et al., “Glucose stimulates human β cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice,” Diabetologia, vol. 54, no. 3, pp. 572–582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Assmann, K. Ueki, J. N. Winnay, T. Kadowaki, and R. N. Kulkarni, “Glucose effects on β-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2,” Molecular and Cellular Biology, vol. 29, no. 11, pp. 3219–3228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Porat, N. Weinberg-Corem, S. Tornovsky-Babaey et al., “Control of pancreatic β cell regeneration by glucose metabolism,” Cell Metabolism, vol. 13, no. 4, pp. 440–449, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kassem, M. Heyman, B. Glaser et al., “Large islets, β-cell proliferation, and a glucokinase mutation,” New England Journal of Medicine, vol. 362, no. 14, pp. 1348–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. L. Sorenson and T. C. Brelje, “Adaptation of islets of Langerhans to pregnancy: β-cell growth, enhanced insulin secretion and the role of lactogenic hormones,” Hormone and Metabolic Research, vol. 29, no. 6, pp. 301–307, 1997. View at Scopus
  14. S. Rieck and K. H. Kaestner, “Expansion of β-cell mass in response to pregnancy,” Trends Endocrinol Metab, vol. 21, no. 3, pp. 151–158, 2010. View at Publisher · View at Google Scholar
  15. J. A. Parsons, T. C. Brelje, and R. L. Sorenson, “Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion,” Endocrinology, vol. 130, no. 3, pp. 1459–1466, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. F. A. van Assche, L. Aerts, and F. de Prins, “A morphological study of the endocrine pancreas in human pregnancy,” British Journal of Obstetrics and Gynaecology, vol. 85, no. 11, pp. 818–820, 1978. View at Scopus
  17. T. C. Brelje, L. E. Stout, N. V. Bhagroo, and R. L. Sorenson, “Distinctive roles for prolactin and growth hormone in the activation of signal transducer and activator of transcription 5 in pancreatic islets of langerhans,” Endocrinology, vol. 145, no. 9, pp. 4162–4175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. E. Butler, L. Cao-Minh, R. Galasso et al., “Adaptive changes in pancreatic β cell fractional area and β cell turnover in human pregnancy,” Diabetologia, vol. 53, no. 10, pp. 2167–2176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Karnik, H. Chen, G. W. McLean et al., “Menin controls growth of pancreatic β-cells in pregnant mice and promotes gestational diabetes mellitus,” Science, vol. 318, no. 5851, pp. 806–809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Zhang, J. Zhang, C. F. Pope et al., “Gestational diabetes mellitus resulting from impaired β-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen,” Diabetes, vol. 59, no. 1, pp. 143–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kim, Y. Toyofuku, F. C. Lynn et al., “Serotonin regulates pancreatic β cell mass during pregnancy,” Nature Medicine, vol. 16, no. 7, pp. 804–808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Klöppel, M. Löhr, K. Habich, M. Oberholzer, and P. U. Heitz, “Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited,” Survey and Synthesis of Pathology Research, vol. 4, no. 2, pp. 110–125, 1985. View at Scopus
  23. R. A. Ritzel, A. E. Butler, R. A. Rizza, J. D. Veldhuis, and P. C. Butler, “Relationship between β-cell mass and fasting blood glucose concentration in humans,” Diabetes Care, vol. 29, no. 3, pp. 717–718, 2006. View at Scopus
  24. P. C. Butler, J. J. Meier, A. E. Butler, and A. Bhushan, “The replication of beta cells in normal physiology, in disease and for therapy,” Nature Clinical Practice Endocrinology & Metabolism, vol. 3, no. 11, pp. 758–768, 2007. View at Publisher · View at Google Scholar
  25. D. B. Davis, J. A. Lavine, J. I. Suhonen et al., “FoxM1 is up-regulated by obesity and stimulates β-cell proliferation,” Molecular Endocrinology, vol. 24, no. 9, pp. 1822–1834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Krishnamurthy, C. Torrice, M. R. Ramsey et al., “Ink4a/Arf expression is a biomarker of aging,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1299–1307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. I. Tschen, S. Dhawan, T. Gurlo, and A. Bhushan, “Age-dependent decline in β-cell proliferation restricts the capacity of β-cell regeneration in mice,” Diabetes, vol. 58, no. 6, pp. 1312–1320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. M. Rankin and J. A. Kushner, “Adaptive β-cell proliferation is severely restricted with advanced age,” Diabetes, vol. 58, no. 6, pp. 1365–1372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Krishnamurthy, M. R. Ramsey, K. L. Ligon et al., “p16INK4a induces an age-dependent decline in islet regenerative potential,” Nature, vol. 443, no. 7110, pp. 453–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Georgia and A. Bhushan, “p27 regulates the transition of β-cells from quiescence to proliferation,” Diabetes, vol. 55, no. 11, pp. 2950–2956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. C. U. Köhler, M. Olewinski, A. Tannapfel, W. E. Schmidt, H. Fritsch, and J. J. Meier, “Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas,” American Journal of Physiology, vol. 300, no. 1, pp. E221–E230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Dhawan, S. I. Tschen, and A. Bhushan, “Bmi-1 regulates the Ink4a/Arf locus to control pancreatic β-cell proliferation,” Genes and Development, vol. 23, no. 8, pp. 906–911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Chen, X. Gu, I. H. Su et al., “Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus,” Genes and Development, vol. 23, no. 8, pp. 975–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Cozar-Castellano, N. Fiaschi-Taesch, T. A. Bigatel et al., “Molecular control of cell cycle progression in the pancreatic β-cell,” Endocrine Reviews, vol. 27, no. 4, pp. 356–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. C. Lee and J. H. Nielsen, “Regulation of β cell replication,” Molecular and Cellular Endocrinology, vol. 297, no. 1-2, pp. 18–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. Heit, S. K. Karnik, and S. K. Kim, “Intrinsic regulators of pancreatic β-cell proliferation,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 311–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Kushner, M. A. Ciemerych, E. Sicinska et al., “Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth,” Molecular and Cellular Biology, vol. 25, no. 9, pp. 3752–3762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Fatrai, L. Elghazi, N. Balcazar et al., “Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity,” Diabetes, vol. 55, no. 2, pp. 318–325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. N. M. Fiaschi-Taesch, F. Salim, J. Kleinberger et al., “Induction of human β-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6,” Diabetes, vol. 59, no. 8, pp. 1926–1936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Cozar-Castellano, K. K. Takane, R. Bottino, A. N. Balamurugan, and A. F. Stewart, “Induction of β-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of cyclin-dependent kinase-4 and cyclin D1,” Diabetes, vol. 53, no. 1, pp. 149–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Fiaschi-Taesch, T. A. Bigatel, B. Sicari et al., “Survey of the human pancreatic β-cell G1/S proteome reveals a potential therapeutic role for Cdk-6 and Cyclin D1 in Enhancing Human β-cell replication and function in vivo,” Diabetes, vol. 58, no. 4, pp. 882–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Lapenna and A. Giordano, “Cell cycle kinases as therapeutic targets for cancer,” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 547–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. H. J. Welters and R. N. Kulkarni, “Wnt signaling: relevance to β-cell biology and diabetes,” Trends in Endocrinology and Metabolism, vol. 19, no. 10, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. J. Kim, J. R. Schleiffarth, J. Jessurun et al., “Wnt5 signaling in vertebrate pancreas development,” BMC Biology, vol. 3, p. 23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Schinner, F. Ülgen, C. Papewalis et al., “Regulation of insulin secretion, glucokinase gene transcription and β cell proliferation by adipocyte-derived Wnt signalling molecules,” Diabetologia, vol. 51, no. 1, pp. 147–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. I. C. Rulifson, S. K. Karnik, P. W. Heiser et al., “Wnt signaling regulates pancreatic β cell proliferation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 15, pp. 6247–6252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Mussmann, M. Geese, F. Harder et al., “Inhibition of GSK3 promotes replication and survival of pancreatic β cells,” Journal of Biological Chemistry, vol. 282, no. 16, pp. 12030–12037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Stukenbrock, R. Mussmann, M. Geese et al., “9-Cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic β cell protection and replication,” Journal of Medicinal Chemistry, vol. 51, no. 7, pp. 2196–2207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Liu, M. S. Remedi, K. L. Pappan et al., “Glycogen synthase kinase-3 and mammalian target of rapamycin pathways contribute to DNA synthesis, cell cycle progression, and proliferation in human islets,” Diabetes, vol. 58, no. 3, pp. 663–672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Cohen and M. Goedert, “GSK3 inhibitors: development and therapeutic potential,” Nature Reviews Drug Discovery, vol. 3, no. 6, pp. 479–487, 2004. View at Scopus
  51. P. Wei, M. Shi, S. Barnum, H. Cho, T. Carlson, and J. D. Fraser, “Effects of glucokinase activators GKA50 and LY2121260 on proliferation and apoptosis in pancreatic INS-1 β cells,” Diabetologia, vol. 52, no. 10, pp. 2142–2150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Gao, L. Tian, G. Weng et al., “Stimulating β cell replication and improving islet graft function by GPR119 agonists,” Transplant International, vol. 24, no. 11, pp. 1124–1134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. W. Wang, J. R. Walker, X. Wang et al., “Identification of small-molecule inducers of pancreatic β-cell expansion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1427–1432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. P. Annes, J. H. Ryu, K. Lam et al., “Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 10, pp. 3915–3920, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Terauchi, I. Takamoto, N. Kubota et al., “Glucokinase and IRS-2 are required for compensatory β cell hyperplasia in response to high-fat diet-induced insulin resistance,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 246–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Nakamura, Y. Terauchi, S. Ohyama et al., “Impact of small-molecule glucokinase activator on glucose metabolism and β-cell mass,” Endocrinology, vol. 150, no. 3, pp. 1147–1154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. F. M. Matschinsky, “Assessing the potential of glucokinase activators in diabetes therapy,” Nature Reviews Drug Discovery, vol. 8, no. 5, pp. 399–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Xu, D. A. Stoffers, J. F. Habener, and S. Bonner-Weir, “Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats,” Diabetes, vol. 48, no. 12, pp. 2270–2276, 1999. View at Scopus
  59. A. King, J. Lock, G. Xu, S. Bonner-Weir, and G. C. Weir, “Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment,” Diabetologia, vol. 48, no. 10, pp. 2074–2079, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Sharma, A. Sörenby, A. Wernerson, S. Efendic, M. Kumagai-Braesch, and A. Tibell, “Exendin-4 treatment improves metabolic control after rat islet transplantation to athymic mice with streptozotocin-induced diabetes,” Diabetologia, vol. 49, no. 6, pp. 1247–1253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. J. H. Juang, C. H. Kuo, C. H. Wu, and C. Juang, “Exendin-4 treatment expands graft β-cell mass in diabetic mice transplanted with a marginal number of fresh islets,” Cell Transplantation, vol. 17, no. 6, pp. 641–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Burcelin and S. Dejager, “GLP-1: what is known, new and controversial in 2010?” Diabetes and Metabolism, vol. 36, no. 6, pp. 503–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Tian, J. Gao, G. Weng et al., “Comparison of exendin-4 on β-cell replication in mouse and human islet grafts,” Transplant International, vol. 24, no. 8, pp. 856–864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. Liu and J. F. Habener, “Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic β cell proliferation,” Journal of Biological Chemistry, vol. 283, no. 13, pp. 8723–8735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Saxena, B. F. Voight, V. Lyssenko et al., “Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels,” Science, vol. 316, no. 5829, pp. 1331–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Mudaliar and R. R. Henry, “Effects of incretin hormones on β-cell mass and function, body weight, and hepatic and myocardial function,” American Journal of Medicine, vol. 123, no. 3, pp. S19–S27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Ahrén, “Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes,” Nature Reviews Drug Discovery, vol. 8, no. 5, pp. 369–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Ohishi and S. Yoshida, “The therapeutic potential of GPR119 agonists for type 2 diabetes,” Expert Opinion on Investigational Drugs, vol. 21, no. 3, pp. 321–328, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Fredriksson, D. E. I. Gloriam, P. J. Höglund, M. C. Lagerström, and H. B. Schiöth, “There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini,” Biochemical and Biophysical Research Communications, vol. 301, no. 3, pp. 725–734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. L. Chu, R. M. Jones, H. He et al., “A role for β-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release,” Endocrinology, vol. 148, no. 6, pp. 2601–2609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Soga, T. Ohishi, T. Matsui et al., “Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor,” Biochemical and Biophysical Research Communications, vol. 326, no. 4, pp. 744–751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. H. A. Overton, A. J. Babbs, S. M. Doel et al., “Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents,” Cell Metabolism, vol. 3, no. 3, pp. 167–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Gao, L. Tian, G. Weng, T. D. O'Brien, J. Luo, and Z. Guo, “Stimulating β-cell replication and improving islet graft function by AR231453, A gpr119 agonist,” Transplantation Proceedings, vol. 43, no. 9, pp. 3217–3220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Yoshida, T. Ohishi, T. Matsui et al., “The role of small molecule GPR119 agonist, AS1535907, in glucose-stimulated insulin secretion and pancreatic β-cell function,” Diabetes, Obesity and Metabolism, vol. 13, no. 1, pp. 34–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Semple, J. Lehmann, A. Wong et al., “Discovery of a second generation agonist of the orphan G-protein coupled receptor GPR119 with an improved profile,” Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 4, pp. 1750–1755, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Efrat, D. Fusco-DeMane, H. Lemberg, O. A. Emran, and X. Wang, “Conditional transformation of a pancreatic β-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 8, pp. 3576–3580, 1995. View at Scopus
  77. S. N. Yang and P. O. Berggren, “The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology,” Endocrine Reviews, vol. 27, no. 6, pp. 621–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Yamada, A. Kuroe, Q. Li et al., “Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients,” Diabetes/Metabolism Research and Reviews, vol. 17, no. 3, pp. 213–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. L. Muller, R. L. Hanson, C. Zimmerman et al., “Variants in the Cav2.3 (α1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians,” Diabetes, vol. 56, no. 12, pp. 3089–3094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. G. S. Sellick, C. Garrett, and R. S. Houlston, “A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13,” Diabetes, vol. 52, no. 10, pp. 2636–2638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Namkung, N. Skrypnyk, M. J. Jeong et al., “Requirement for the L-type Ca2+ channel α1D subunit in postnatal pancreatic β cell generation,” Journal of Clinical Investigation, vol. 108, no. 7, pp. 1015–1022, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Walpita, T. Hasaka, J. Spoonamore et al., “A human islet cell culture system for high-throughput screening,” Journal of Biomolecular Screening, vol. 17, no. 4, pp. 509–518, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. C. M. Andres and I. H. Fox, “Purification and properties of human placental adenosine kinase,” Journal of Biological Chemistry, vol. 254, no. 22, pp. 11388–11393, 1979. View at Scopus
  84. P. Bork, C. Sander, and A. Valencia, “Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases,” Protein Science, vol. 2, no. 1, pp. 31–40, 1993. View at Scopus
  85. Y. Yang, B. Gurung, T. Wu, H. Wang, D. A. Stoffers, and X. Hua, “Reversal of preexisting hyperglycemia in diabetic mice by acute deletion of the Men1 gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 47, pp. 20358–20363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Grembecka, S. He, A. Shi et al., “Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia,” Nature Chemical Biology, vol. 8, no. 3, pp. 277–284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. O. Lenoir, K. Flosseau, F. X. Ma et al., “Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9,” Diabetes, vol. 60, no. 11, pp. 2861–2871, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Haumaitre, O. Lenoir, and R. Scharfmann, “Directing cell differentiation with small-molecule histone deacetylase inhibitors: the example of promoting pancreatic endocrine cells,” Cell Cycle, vol. 8, no. 4, pp. 536–544, 2009. View at Publisher · View at Google Scholar
  89. C. Haumaitre, O. Lenoir, and R. Scharfmann, “Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors,” Molecular and Cellular Biology, vol. 28, no. 20, pp. 6373–6383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Brun, I. Franklin, L. St-Onge et al., “The diabetes-linked transcription factor PAX4 promotes β-cell proliferation and survival in rat and human islets,” Journal of Cell Biology, vol. 167, no. 6, pp. 1123–1135, 2004. View at Publisher · View at Google Scholar · View at Scopus