About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 167138, 7 pages
http://dx.doi.org/10.1155/2013/167138
Review Article

Osteoporosis Associated with Antipsychotic Treatment in Schizophrenia

1Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha 410011, China
2Department of Nursing, Second Xiangya Hospital, Central South University, Changsha 410011, China

Received 19 December 2012; Revised 20 February 2013; Accepted 18 March 2013

Academic Editor: Guang-Da Xiang

Copyright © 2013 Haishan Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Renn, N. P. Yang, C. M. Chueh, C. Y. Lin, T. H. Lan, and P. Chou, “Bone mass in schizophrenia and normal populations across different decades of life,” BMC Musculoskeletal Disorders, vol. 10, article 1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Tiihonen, J. Lönnqvist, K. Wahlbeck et al., “11-year follow-up of mortality in patients with schizophrenia: a population-based cohort study (FIN11 study),” The Lancet, vol. 374, no. 9690, pp. 620–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kisely, N. Preston, J. Xiao, et al., “Reducing all-cause mortality among patients with psychiatric disorders: a population-based study,” Canadian Medical Association Journal, vol. 185, no. 1, pp. 50–56, 2013. View at Publisher · View at Google Scholar
  4. D. P. J. Osborn, G. Levy, I. Nazareth, I. Petersen, A. Islam, and M. B. King, “Relative risk of cardiovascular and cancer mortality in people with severe mental illness from the United Kingdom's General Practice Research Database,” Archives of General Psychiatry, vol. 64, no. 2, pp. 242–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Y. Reginster and N. Burlet, “Osteoporosis: a still increasing prevalence,” Bone, vol. 38, no. 2, supplement 1, pp. S4–S9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Nshimyumukiza, A. Durand, M. Gagnon et al., “An economic evaluation: simulation of the cost/effectiveness and cost/utility of universal prevention strategies against osteoporosis-related fractures,” Journal of Bone and Mineral Research, vol. 28, no. 2, pp. 383–394, 2013. View at Publisher · View at Google Scholar
  7. S. R. Cummings and L. J. Melton, “Osteoporosis I: epidemiology and outcomes of osteoporotic fractures,” Lancet, vol. 359, no. 9319, pp. 1761–1767, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Higuchi, T. Komoda, M. Sugishita et al., “Certain neuroleptics reduce bone mineralization in schizophrenic patients,” Neuropsychobiology, vol. 18, no. 4, pp. 185–188, 1987. View at Scopus
  9. N. J. Delva, J. L. Crammer, S. V. Jarzylo et al., “Osteopenia, pathological fractures, and increased urinary calcium excretion in schizophrenic patients with polydipsia,” Biological Psychiatry, vol. 26, no. 8, pp. 781–793, 1989. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Abraham, R. H. Friedman, C. Verghese, and J. de Leon, “Osteoporosis and schizophrenia: can we limit known risk factors?” Biological Psychiatry, vol. 38, no. 2, pp. 131–132, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Abraham, U. Halbreich, R. H. Friedman, and R. C. Josiassen, “Bone mineral density and prolactin associations in patients with chronic schizophrenia,” Schizophrenia Research, vol. 59, no. 1, pp. 17–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Pouwels, T. P. Van Staa, A. C. G. Egberts, H. G. M. Leufkens, C. Cooper, and F. de Vries, “Antipsychotic use and the risk of hip/femur fracture: a population-based case-control study,” Osteoporosis International, vol. 20, no. 9, pp. 1499–1506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. W. K. Hugenholtz, E. R. Heerdink, T. P. Van Staa, W. A. Nolen, and A. C. G. Egberts, “Risk of hip/femur fractures in patients using antipsychotics,” Bone, vol. 37, no. 6, pp. 864–870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. V. O'Keane and A. M. Meaney, “Antipsychotic drugs: a new risk factor for osteoporosis in young women with schizophrenia?” Journal of Clinical Psychopharmacology, vol. 25, no. 1, pp. 26–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Kishimoto, M. de Hert, H. E. Carlson, P. Manu, and C. U. Correll, “Osteoporosis and fracture risk in people with schizophrenia,” Current Opinion in Psychiatry, vol. 25, no. 5, pp. 415–429, 2012.
  16. L. Howard, G. Kirkwood, and M. Leese, “Risk of hip fracture in patients with a history of schizophrenia,” British Journal of Psychiatry, vol. 190, pp. 129–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. U. Jung, D. L. Kelly, M. K. Oh et al., “Bone mineral density and osteoporosis risk in older patients with schizophrenia,” Journal of Clinical Psychopharmacology, vol. 31, no. 4, pp. 406–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Rey-Sanchez, J. M. Lavado-García, M. L. Canal-Macías, M. A. Gómez-Zubeldia, R. Roncero-Martín, and J. D. Pedrera-Zamorano, “Ultrasound bone mass in schizophrenic patients on antipsychotic therapy,” Human Psychopharmacology, vol. 24, no. 1, pp. 49–54, 2009.
  19. K. M. Abel, H. F. Heatlie, L. M. Howard, and R. T. Webb, “Sex- and age-specific incidence of fractures in mental illness: a historical, population-based cohort study,” Journal of Clinical Psychiatry, vol. 69, no. 9, pp. 1398–1403, 2008. View at Scopus
  20. P. Vestergaard, L. Rejnmark, and L. Mosekilde, “Anxiolytics and sedatives and risk of fractures: effects of half-life,” Calcified Tissue International, vol. 82, no. 1, pp. 34–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. V. Tyler Jr., C. W. Snyder, and S. Zyzanski, “Screening for osteoporosis in community-dwelling adults with mental retardation,” Mental Retardation, vol. 38, no. 4, pp. 316–321, 2000. View at Scopus
  22. D. U. Jung, R. R. Conley, D. L. Kelly et al., “Prevalence of bone mineral density loss in Korean patients with schizophrenia: a cross-sectional study,” Journal of Clinical Psychiatry, vol. 67, no. 9, pp. 1391–1396, 2006. View at Scopus
  23. M. Hummer, P. Malik, R. W. Gasser et al., “Osteoporosis in patients with schizophrenia,” American Journal of Psychiatry, vol. 162, no. 1, pp. 162–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Halbreich, N. Rojansky, S. Palter et al., “Decreased bone mineral density in medicated psychiatric patients,” Psychosomatic Medicine, vol. 57, no. 5, pp. 485–491, 1995. View at Scopus
  25. H. Hafner, W. an der Heiden, S. Behrens et al., “Causes and consequences of the gender difference in age at onset of schizophrenia,” Schizophrenia Bulletin, vol. 24, no. 1, pp. 99–113, 1998.
  26. M. Hummer and J. Huber, “Hyperprolactinaemia and antipsychotic therapy in schizophrenia,” Current Medical Research and Opinion, vol. 20, no. 2, pp. 189–197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Hui, C. W. Slemenda, and C. C. Johnston, “Age and bone mass as predictors of fracture in a prospective study,” Journal of Clinical Investigation, vol. 81, no. 6, pp. 1804–1809, 1988. View at Scopus
  28. J. A. Cauley, “Defining ethnic and racial differences in osteoporosis and fragility fractures,” Clinical Orthopaedics and Related Research, vol. 469, no. 7, pp. 1891–1899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. K. Rybakowski, M. Dmitrzak-Weglarz, P. Kapelski, and J. Hauser, “Functional-1149 g/t polymorphism of the prolactin gene in schizophrenia,” Neuropsychobiology, vol. 65, no. 1, pp. 41–44, 2012.
  30. J. C. Shim, D. U. Jung, S. S. Jung et al., “Adjunctive varenicline treatment with antipsychotic medications for cognitive impairments in people with schizophrenia: a randomized double-blind placebo-controlled trial,” Neuropsychopharmacology, vol. 37, no. 3, pp. 660–668, 2012.
  31. H. Liu, N. M. Paige, C. L. Goldzweig et al., “Screening for osteoporosis in men: a systematic review for an american college of physicians guideline,” Annals of Internal Medicine, vol. 148, no. 9, pp. 685–701, 2008. View at Scopus
  32. F. Dickerson, C. R. Stallings, A. E. Origoni et al., “Cigarette smoking among persons with schizophrenia or bipolar disorder in routine clinical settings, 1999–2011,” Psychiatric Services, vol. 64, no. 1, pp. 44–50, 2013. View at Publisher · View at Google Scholar
  33. H. W. Daniell, “Osteoporosis of the slender smoker. Vertebral compression fractures and loss of metacarpal cortex in relation to postmenopausal cigarette smoking and lack of obesity,” Archives of Internal Medicine, vol. 136, no. 3, pp. 298–304, 1976. View at Publisher · View at Google Scholar · View at Scopus
  34. M. R. Law and A. K. Hackshaw, “A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect,” British Medical Journal, vol. 315, no. 7112, pp. 841–846, 1997. View at Scopus
  35. M. Pekkinen, H. Viljakainen, E. Saarnio, C. Lamberg-Allardt, and O. Mäkitie, “Vitamin D is a major determinant of bone mineral density at school age,” PLoS One, vol. 7, no. 7, Article ID e40090, 2012.
  36. M. E. Molitch, “Medication-induced hyperprolactinemia,” Mayo Clinic Proceedings, vol. 80, no. 8, pp. 1050–1057, 2005. View at Scopus
  37. C. Bushe, M. Shaw, and R. C. Peveler, “A review of the association between antipsychotic use and hyperprolactinaemia.,” Journal of Psychopharmacology, vol. 22, supplement 2, pp. 46–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. M. Carvalho and C. Gois, “Hyperprolactinemia in mentally ill patients,” Acta Médica Portuguesa, vol. 24, no. 6, pp. 1005–1012, 2011.
  39. P. A. Marken, R. F. Haykal, and J. N. Fisher, “Management of psychotropic-induced hyperprolactinemia,” Clinical Pharmacy, vol. 11, no. 10, pp. 851–856, 1992. View at Scopus
  40. J. M. Jerrell, J. Bacon, J. T. Burgis, and S. Menon, “Hyperprolactinemia-related adverse events associated with antipsychotic treatment in children and adolescents,” Journal of Adolescent Health, vol. 45, no. 1, pp. 70–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Roke, P. N. Van Harten, A. M. Boot, and J. K. Buitelaar, “Antipsychotic medication in children and adolescents: a descriptive review of the effects on prolactin level and associated side effects,” Journal of Child and Adolescent Psychopharmacology, vol. 19, no. 4, pp. 403–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Montgomery, E. Winterbottom, M. Jessani et al., “Prevalence of hyperprolactinemia in schizophrenia: association with typical and atypical antipsychotic treatment,” Journal of Clinical Psychiatry, vol. 65, no. 11, pp. 1491–1498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. I. R. Falconer, J. V. Langley, and A. T. Vacek, “Effect of prolactin on 86Rb+ uptake, potassium content and [G-3H]ouabain binding of lactating rabbit mammary tissue,” Journal of Physiology, vol. 334, pp. 1–17, 1983. View at Scopus
  44. M. Jaber, S. W. Robinson, C. Missale, and M. G. Caron, “Dopamine receptors and brain function,” Neuropharmacology, vol. 35, no. 11, pp. 1503–1519, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. P. M. Haddad and A. Wieck, “Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management,” Drugs, vol. 64, no. 20, pp. 2291–2314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. R. A. Bressan, K. Erlandsson, E. P. Spencer, P. J. Ell, and L. S. Pilowsky, “Prolactinemia is uncoupled from central D2/D3 dopamine receptor occupancy in amisulpride treated patients,” Psychopharmacology, vol. 175, no. 3, pp. 367–373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Markianos, J. Hatzimanolis, and L. Lykouras, “Neuroendocrine responsivities of the pituitary dopamine system in male schizophrenic patients during treatment with clozapine, olanzapine, risperidone, sulpiride, or haloperidol,” European Archives of Psychiatry and Clinical Neuroscience, vol. 251, no. 3, pp. 141–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Arakawa, M. Okumura, H. Ito et al., “Positron emission tomography measurement of dopamine D2 receptor occupancy in the pituitary and cerebral cortex: relation to antipsychotic-induced hyperprolactinemia,” Journal of Clinical Psychiatry, vol. 71, no. 9, pp. 1131–1137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Baptista, A. Lacruz, T. Meza et al., “Antipsychotic drugs and obesity: is prolactin involved?” Canadian Journal of Psychiatry, vol. 46, no. 9, pp. 829–834, 2001. View at Scopus
  50. D. Seriwatanachai, K. Thongchote, N. Charoenphandhu et al., “Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor κB ligand/osteoprotegerin ratio,” Bone, vol. 42, no. 3, pp. 535–546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. K. J. Motyl, I. Dick-de-Paula, A. E. Maloney, et al., “Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain,” Bone, vol. 50, no. 2, pp. 490–498, 2012. View at Publisher · View at Google Scholar
  52. S. Puntheeranurak, N. Charoenphandhu, and N. Krishnamra, “Enhanced trabecular-bone calcium deposition in female rats with a high physiological dose of prolactin diminishes after ovariectomy,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 10, pp. 993–1001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Clément-Lacroix, C. Ormandy, L. Lepescheux et al., “Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice,” Endocrinology, vol. 140, no. 1, pp. 96–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. T. J. Martin and M. T. Gillespie, “Receptor activator of nuclear factor κB ligand (RANKL): another link between breast and bone,” Trends in Endocrinology and Metabolism, vol. 12, no. 1, pp. 2–4, 2001. View at Scopus
  55. S. M. Graham, D. Howgate, W. Anderson et al., “Risk of osteoporosis and fracture incidence in patients on antipsychotic medication,” Expert Opinion on Drug Safety, vol. 10, no. 4, pp. 575–602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. A. M. Meaney and V. O'Keane, “Prolactin and schizophrenia: clinical consequences of hyperprolactinaemia,” Life Sciences, vol. 71, no. 9, pp. 979–992, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Bácsi, J. P. Kósa, G. Borgulya et al., “CYP3A7*1C polymorphism, serum dehydroepiandrosterone sulfate level, and bone mineral density in postmenopausal women,” Calcified Tissue International, vol. 80, no. 3, pp. 154–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Sherman, “Preventing and treating osteoporosis: strategies at the millennium,” Annals of the New York Academy of Sciences, vol. 949, pp. 188–197, 2001. View at Scopus
  59. N. B. Watts, “Therapies to improve bone mineral density and reduce the risk of fracture: clinical trial results,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 47, supplement 1, pp. 82–92, 2002. View at Scopus
  60. M. A. Rodriguez-Martinez and E. C. Garcia-Cohen, “Role of Ca(2+) and vitamin D in the prevention and treatment of osteoporosis,” Pharmacology & Therapeutics, vol. 93, no. 1, pp. 37–49, 2002.
  61. S. R. Marder, S. M. Essock, A. L. Miller, et al., “Physical health monitoring of patients with schizophrenia,” American Journal of Psychiatry, vol. 161, no. 8, pp. 1334–1349, 2004.
  62. R. C. Peveler, D. Branford, L. Citrome, et al., “Antipsychotics and hyperprolactinaemia: clinical recommendations,” Journal of Psychopharmacology, vol. 22, supplement 2, pp. 98–103, 2008. View at Publisher · View at Google Scholar
  63. M. J. Stampfer, G. A. Colditz, and W. C. Willett, “Menopause and heart disease: a review,” Annals of the New York Academy of Sciences, vol. 592, pp. 193–203, 1990. View at Publisher · View at Google Scholar · View at Scopus
  64. J. C. Shim, J. G. K. Shin, D. L. Kelly et al., “Adjunctive treatment with a dopamine partial agonist, aripiprazole, for antipsychotic-induced hyperprolactinemia: a placebo-controlled trial,” American Journal of Psychiatry, vol. 164, no. 9, pp. 1404–1410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Mir, K. Shivakumar, R. J. Williamson, V. McAllister, V. O'Keane, and K. J. Aitchison, “Change in sexual dysfunction with aripiprazole: a switching or add-on study,” Journal of Psychopharmacology, vol. 22, no. 3, pp. 244–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. A. C. Hergenroeder, “Bone mineralization, hypothalamic amenorrhea, and sex steroid therapy in female adolescents and young adults,” Journal of Pediatrics, vol. 126, no. 5, part 1, pp. 683–689, 1995. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Gulekli, M. C. Davies, and H. S. Jacobs, “Effect of treatment on established osteoporosis in young women with amenorrhoea,” Clinical Endocrinology, vol. 41, no. 3, pp. 275–281, 1994. View at Scopus
  68. D. Seriwatanachai, N. Krishnamra, and J. P. T. M. Van Leeuwen, “Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 677–685, 2009. View at Publisher · View at Google Scholar · View at Scopus