About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 182060, 6 pages
http://dx.doi.org/10.1155/2013/182060
Review Article

Osteoprotegerin as a Marker of Atherosclerosis in Diabetic Patients

12nd Department of Obstetrics and Gynecology, University of Athens Medical School, Aretaeio Hospital, 11526 Athens, Greece
2Obstetric-Gynecological Unit and Research Center, Evgenideio Hospital, University of Athens, 11526 Athens, Greece
3Department of Obstetrics and Gynaecology, Medical School, University of Thessaly, 41334 Larissa, Greece
42nd University Department of Obstetrics and Gynecology, Hippokratio General Hospital, University of Thessaloniki Medical School, 54642 Thessaloniki, Greece
5Department of Obstetrics and Gynaecology, General District Hospital “Helena Venizelou”, 11521 Athens, Greece
61st Department of Surgery, University of Athens Medical School, Laiko Hospital, 11527 Athens, Greece

Received 19 November 2012; Accepted 28 December 2012

Academic Editor: Anil K. Agarwal

Copyright © 2013 Areti Augoulea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Venuraju, A. Yerramasu, R. Corder, and A. Lahiri, “Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity,” Journal of the American College of Cardiology, vol. 55, no. 19, pp. 2049–2061, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Carnevale, E. Romaglino, and E. D'Erasmo, “Skeletal involvement in patients with diabetes mellitus,” Diabetes/Metabolism Research and Reviews, vol. 20, no. 3, pp. 196–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Valerio, A. Del Puente, A. Esposito-del Puente, P. Buono, E. Mozzillo, and A. Franzese, “The lumbar bone mineral density is affected by long-term poor metabolic control in adolescents with type 1 diabetes mellitus,” Hormone Research, vol. 58, no. 6, pp. 266–272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Heap, M. A. Murray, S. C. Miller, T. Jalili, and L. J. Moyer-Mileur, “Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus,” Journal of Pediatrics, vol. 144, no. 1, pp. 56–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. N. X. Chen and S. M. Moe, “Arterial calcification in diabetes,” Current Diabetes Reports, vol. 3, no. 1, pp. 28–32, 2003. View at Scopus
  6. S. Jono, Y. Ikari, A. Shioi et al., “Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease,” Circulation, vol. 106, no. 10, pp. 1192–1194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Schoppet, A. M. Sattler, J. R. Schaefer, M. Herzum, B. Maisch, and L. C. Hofbauer, “Increased osteoprotegerin serum levels in men with coronary artery disease,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 3, pp. 1024–1028, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Abedin, T. Omland, T. Ueland et al., “Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study),” American Journal of Cardiology, vol. 99, no. 4, pp. 513–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kiechl, G. Schett, G. Wenning et al., “Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease,” Circulation, vol. 109, no. 18, pp. 2175–2180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Ali, A. A. Ellington, T. H. Mosley, and I. J. Kullo, “Association of serum osteoprotegerin with ankle-brachial index and urine albumin: creatinine ratio in African-Americans and non-Hispanic whites,” Atherosclerosis, vol. 206, no. 2, pp. 575–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Shargorodsky, M. Boaz, A. Luckish, Z. Matas, D. Gavish, and M. Mashavi, “Osteoprotegerin as an independent marker of subclinical atherosclerosis in osteoporotic postmenopausal women,” Atherosclerosis, vol. 204, no. 2, pp. 608–611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nybo and L. M. Rasmussen, “The capability of plasma osteoprotegerin as a predictor of cardiovascular disease: a systematic literature review,” European Journal of Endocrinology, vol. 159, no. 5, pp. 603–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. H. Gannagé-Yared, C. Yaghi, B. Habre et al., “Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study,” European Journal of Endocrinology, vol. 158, no. 3, pp. 353–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Avignon, A. Sultan, C. Piot, S. Elaerts, J. P. Cristol, and A. M. Dupuy, “Osteoprotegerin is associated with silent coronary artery disease in high-risk but asymptomatic type 2 diabetic patients,” Diabetes Care, vol. 28, no. 9, pp. 2176–2180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. D. Xiang, L. Xu, L. S. Zhao, L. Yue, and J. Hou, “The relationship between plasma osteoprotegerin and endothelium-dependent arterial dilation in type 2 diabetes,” Diabetes, vol. 55, no. 7, pp. 2126–2131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Galluzzi, S. Stagi, R. Salti et al., “Osteoprotegerin serum levels in children with type 1 diabetes: a potential modulating role in bone status,” European Journal of Endocrinology, vol. 153, no. 6, pp. 879–885, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. A. Lane, J. C. Smith, and J. S. Davies, “Noninvasive assessment of preclinical atherosclerosis,” Vascular Health and Risk Management, vol. 2, no. 1, pp. 19–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. W. J. Mack, L. Labree, C. R. Liu, C. H. Liu, R. H. Selzer, and H. N. Hodis, “Correlations between measures of atherosclerosis change using carotid ultrasonography and coronary angiography,” Atherosclerosis, vol. 150, no. 2, pp. 371–379, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. L. Bots, A. W. Hoes, P. J. Koudstaal, A. Hofman, and D. E. Grobbee, “Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study,” Circulation, vol. 96, no. 5, pp. 1432–1437, 1997. View at Scopus
  20. T. P. Singh, H. Groehn, and A. Kazmers, “Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus,” Journal of the American College of Cardiology, vol. 41, no. 4, pp. 661–665, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Järvisalo, M. Raitakari, J. O. Toikka et al., “Endothelial dysfunction and increased arterial iIntima-media thickness in children with type 1 diabetes,” Circulation, vol. 109, no. 14, pp. 1750–1755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Järvisalo, L. Jartti, K. Näntö-Salonen et al., “Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children,” Circulation, vol. 104, no. 24, pp. 2943–2947, 2001. View at Scopus
  23. L. M. Rasmussen and T. Ledet, “Osteoprotegerin and diabetic macroangiopathy,” Hormone and Metabolic Research, vol. 37, no. 1, pp. S90–S94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. W. S. Simonet, D. L. Lacey, C. R. Dunstan et al., “Osteoprotegerin: a novel secreted protein involved in the regulation of bone density,” Cell, vol. 89, no. 2, pp. 309–319, 1997. View at Scopus
  25. M. Fu, J. Zhang, Y. Lin, X. Zhu, T. M. Willson, and Y. E. Chen, “Activation of peroxisome proliferator-activated receptor γ inhibits osteoprotegerin gene expression in human aortic smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 294, no. 3, pp. 597–601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Zhang, M. Fu, D. Myles et al., “PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple signal pathways,” FEBS Letters, vol. 521, no. 1–3, pp. 180–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. U. M. Malyankar, M. Scatena, K. L. Suchland, T. J. Yun, E. A. Clark, and C. M. Giachelli, “Osteoprotegerin is an α(v)β3-induced, NF-κB-dependent survival factor for endothelial cells,” Journal of Biological Chemistry, vol. 275, no. 28, pp. 20959–20962, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Olesen, T. Ledet, and L. M. Rasmussen, “Arterial osteoprotegerin: Increased amounts in diabetes and modifiable synthesis from vascular smooth muscle cells by insulin and TNF-α,” Diabetologia, vol. 48, no. 3, pp. 561–568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Collin-Osdoby, “Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin,” Circulation Research, vol. 95, no. 11, pp. 1046–1057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Ovchinnikova, A. Gylfe, L. Bailey et al., “Osteoprotegerin promotes fibrous cap formation in atherosclerotic lesions of ApoE-deficient mice-brief report,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 10, pp. 1478–1480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Morony, Y. Tintut, Z. Zhang et al., “Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice,” Circulation, vol. 117, no. 3, pp. 411–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. U. M. Breland, I. Hollan, K. Saatvedt et al., “Inflammatory markers in patients with coronary artery disease with and without inflammatory rheumatic disease,” Rheumatology, vol. 49, no. 6, pp. 1118–1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Cummings, J. San Martin, M. R. McClung, et al., “FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis,” The New England Journal of Medicine, vol. 361, no. 8, pp. 756–765, 2009.
  34. N. Bucay, I. Sarosi, C. R. Dunstan et al., “Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification,” Genes and Development, vol. 12, no. 9, pp. 1260–1268, 1998. View at Scopus
  35. B. J. Bennett, M. Scatena, E. A. Kirk et al., “Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/-mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 2117–2124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. P. A. Price, H. H. June, J. R. Buckley, and M. K. Williamson, “Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 10, pp. 1610–1616, 2001. View at Scopus
  37. W. S. Browner, L. Y. Lui, and S. R. Cummings, “Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 2, pp. 631–637, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Flyvbjerg, “Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily,” Nature Reviews Endocrinology, vol. 6, no. 2, pp. 94–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Lieb, P. Gona, M. G. Larson et al., “Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 9, pp. 1849–1854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Mogelvang, S. H. Pedersen, A. Flyvbjerg, et al., “Comparison of osteoprotegerin to traditional atherosclerotic risk factors and high-sensitivity C-reactive protein for diagnosis of atherosclerosis,” American Journal of Cardiology, vol. 109, no. 4, pp. 515–520, 2012.
  41. Q. Yang, S. Lu, Y. Chen et al., “Plasma osteoprotegerin levels and long-term prognosis in patients with intermediate coronary artery lesions,” Clinical Cardiology, vol. 34, no. 7, pp. 447–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. C. Hofbauer and M. Schoppet, “Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases,” Journal of the American Medical Association, vol. 292, no. 4, pp. 490–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. K. Jensen, T. Ueland, D. Atar et al., “Osteoprotegerin concentrations and prognosis in acute ischaemic stroke,” Journal of Internal Medicine, vol. 267, no. 4, pp. 410–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. R. Pedersen, T. Ueland, R. Seifert et al., “Serum osteoprotegerin levels and long-term prognosis in patients with stable angina pectoris,” Atherosclerosis, vol. 212, no. 2, pp. 644–649, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Ueland, S. G. Wilson, F. M. Amirul Islam et al., “A cohort study of the effects of serum osteoprotegerin and osteoprotegerin gene polymorphisms on cardiovascular mortality in elderly women,” Clinical Endocrinology, vol. 71, no. 6, pp. 828–833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. G. Semb, T. Ueland, P. Aukrust et al., “Osteoprotegerin and soluble receptor activator of nuclear factor-κB ligand and risk for coronary events: A nested case-control approach in the prospective EPIC-norfolk population study 1993–2003,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 6, pp. 975–980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Zagura, M. Serg, P. Kampus et al., “Association of osteoprotegerin with aortic stiffness in patients with symptomatic peripheral artery disease and in healthy subjects,” American Journal of Hypertension, vol. 23, no. 6, pp. 586–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Helske, P. T. Kovanen, K. A. Lindstedt et al., “Increased circulating concentrations and augmented myocardial extraction of osteoprotegerin in heart failure due to left ventricular pressure overload,” European Journal of Heart Failure, vol. 9, no. 4, pp. 357–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Ueland, R. Jemtland, K. Godang et al., “Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 44, no. 10, pp. 1970–1976, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Crisafulli, A. Micari, D. Altavilla et al., “Serum levels of osteoprotegerin and RANKL in patients with ST elevation acute myocardial infarction,” Clinical Science, vol. 109, no. 4, pp. 389–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Avignon, A. Sultan, C. Piot et al., “Osteoprotegerin: a novel independent marker for silent myocardial ischemia in asymptomatic diabetic patients,” Diabetes Care, vol. 30, no. 11, pp. 2934–2939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. L. M. Rasmussen, L. Tarnow, T. K. Hansen, H. H. Parving, and A. Flyvbjerg, “Plasma osteoprotegerin levels are associated with glycaemic status, systolic blood pressure, kidney function and cardiovascular mordibity in type 1 diabetic patients,” European Journal of Endocrinology, vol. 154, no. 1, pp. 75–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. M. Blazquez-Medela, L. Garcia-Ortiz, M. A. Gomez-Marcos, et al., “Osteoprotegerin is associated with cardiovascular risk in hypertension and/or diabetes,” European Journal of Clinical Investigation, vol. 42, no. 5, pp. 548–556, 2012.
  54. P. H. Davis, J. D. Dawson, W. A. Riley, and R. M. Lauer, “Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age the muscatine Study,” Circulation, vol. 104, no. 23, pp. 2815–2819, 2001. View at Scopus
  55. D. M. Nathan, “Long-term complications of diabetes mellitus,” The New England Journal of Medicine, vol. 328, no. 23, pp. 1676–1685, 1993. View at Publisher · View at Google Scholar · View at Scopus
  56. M. J. Järvisalo, A. Putto-Laurila, L. Jartti et al., “Carotid artery intima-media thickness in children with type 1 diabetes,” Diabetes, vol. 51, no. 2, pp. 493–498, 2002. View at Scopus
  57. A. E. Altinova, F. Toruner, M. Akturk et al., “Relationship between serum osteoprotegerin, glycemic control, renal function and markers of atherosclerosis in type 2 diabetes,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 71, no. 4, pp. 340–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Grauslund, L. M. Rasmussen, A. Green, and A. K. Sjølie, “Does osteoprotegerin relate to micro- and macrovascular complications in long-term type 1 diabetes?” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 70, no. 3, pp. 188–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Golledge, M. McCann, S. Mangan, A. Lam, and M. Karan, “Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis,” Stroke, vol. 35, no. 7, pp. 1636–1641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Lundby-Christensen, T. P. Almdal, B. Carstensen, L. Tarnow, and N. Wiinberg, “Carotid intima-media thickness in individuals with and without type 2 diabetes: a reproducibility study,” Cardiovascular Diabetology, vol. 9, article 40, 2010.
  61. M. K. Poulsen, M. Nybo, J. Dahl, et al., “Plasma osteoprotegerin is related to carotid and peripheral arterial disease, but not to myocardial ischemia in type 2 diabetes mellitus,” Cardiovascular Diabetology, vol. 10, article 76, 2011.
  62. M. Ishiyama, E. Suzuki, J. Katsuda et al., “Associations of coronary artery calcification and carotid intima-media thickness with plasma concentrations of vascular calcification inhibitors in type 2 diabetic patients,” Diabetes Research and Clinical Practice, vol. 85, no. 2, pp. 189–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Y. Shin, Y. G. Shin, and C. H. Chung, “Elevated serum osteoprotegerin levels are associated with vascular endothelial dysfunction in type 2 diabetes,” Diabetes Care, vol. 29, no. 7, pp. 1664–1666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. H. M. Terekeci, M. G. Senol, C. Top et al., “Plasma osteoprotegerin concentrations in type 2 diabetic patients and its association with neuropathy,” Experimental and Clinical Endocrinology and Diabetes, vol. 117, no. 3, pp. 119–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Vrachnis, A. Augoulea, Z. Iliodromiti, I. Lambrinoudaki, S. Sifakis, and G. Creatsas, “Previous gestational diabetes mellitus and markers of cardiovascular risk,” International Journal of Endocrinology, vol. 2012, Article ID 458610, 6 pages, 2012. View at Publisher · View at Google Scholar
  66. S. Bo, S. Valpreda, G. Menato et al., “Should we consider gestational diabetes a vascular risk factor?” Atherosclerosis, vol. 194, no. 2, pp. e72–e79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. A. H. Xiang, H. N. Hodis, M. Kawakubo et al., “Effect of pioglitazone on progression of subclinical atherosclerosis in non-diabetic premenopausal Hispanic women with prior gestational diabetes,” Atherosclerosis, vol. 199, no. 1, pp. 207–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Tarim, F. Yigit, E. Kilicdag et al., “Early onset of subclinical atherosclerosis in women with gestational diabetes mellitus,” Ultrasound in Obstetrics and Gynecology, vol. 27, no. 2, pp. 177–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Abdelghaffar, M. El Amir, A. El Hadidi, and F. El Mougi, “Carotid intima-media thickness: an index for subclinical atherosclerosis in type 1 diabetes,” Journal of Tropical Pediatrics, vol. 52, no. 1, pp. 39–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. G. D. Xiang, H. L. Sun, and L. S. Zhao, “Changes of osteoprotegerin before and after insulin therapy in type 1 diabetic patients,” Diabetes Research and Clinical Practice, vol. 76, no. 2, pp. 199–206, 2007. View at Publisher · View at Google Scholar · View at Scopus